These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 16637344)

  • 1. [Study of blood flow in microvessels using biospeckle dynamics].
    Ganilova IuA; Ul'ianov SS
    Biofizika; 2006; 51(2):347-53. PubMed ID: 16637344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A technique for the estimation of plasma flow in single capillaries using photobleached dyes.
    Wieringa PA; Van Putten MJ; Duling BR
    Microvasc Res; 1993 Nov; 46(3):263-82. PubMed ID: 8121313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of some hydrodynamic factors of thrombus formation in microvessels.
    Petrishchev NN; Mikhailova IA
    Microvasc Res; 1995 Jan; 49(1):12-6. PubMed ID: 7746160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between liposomes and RBC in microvessels in vivo.
    Jeong JH; Sugii Y; Minamiyama M; Takeuchi H; Okamoto K
    Microvasc Res; 2007 Jan; 73(1):39-47. PubMed ID: 16844147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow distribution in closed networks: minimal sets of measuring sites.
    Wetter T; Repges R
    Biometrics; 1984 Mar; 40(1):85-94. PubMed ID: 6733236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume flow and wall shear stress quantification in the human conjunctival capillaries and post-capillary venules in vivo.
    Koutsiaris AG; Tachmitzi SV; Batis N; Kotoula MG; Karabatsas CH; Tsironi E; Chatzoulis DZ
    Biorheology; 2007; 44(5-6):375-86. PubMed ID: 18401076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrokinetic effect of the endothelial glycocalyx layer on two-phase blood flow in small blood vessels.
    Liu M; Yang J
    Microvasc Res; 2009 Jun; 78(1):14-9. PubMed ID: 19362568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The temporal changes of arterial blood flow dynamics.
    Shibeshi SS; Collins WE
    Biomed Sci Instrum; 2006; 42():96-101. PubMed ID: 16817592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accuracy of 1D microvascular flow models in the limit of low Reynolds numbers.
    Pindera MZ; Ding H; Athavale MM; Chen Z
    Microvasc Res; 2009 May; 77(3):273-80. PubMed ID: 19135462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treelike networks accelerating capillary flow.
    Shou D; Ye L; Fan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053007. PubMed ID: 25353880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative velocity investigations in cerebral arteries and aneurysms: 3D phase-contrast MR angiography, laser Doppler velocimetry and computational fluid dynamics.
    Hollnagel DI; Summers PE; Poulikakos D; Kollias SS
    NMR Biomed; 2009 Oct; 22(8):795-808. PubMed ID: 19412933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Movement of a spherical cell in capillaries using a boundary element method.
    Wen PH; Aliabadi MH; Wang W
    J Biomech; 2007; 40(8):1786-93. PubMed ID: 17027993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte velocity measurement in microvessels by a correlation method.
    Wayland H; Johnson PC
    Bibl Anat; 1967; 9():160-3. PubMed ID: 6029861
    [No Abstract]   [Full Text] [Related]  

  • 17. Numerical simulation of blood flow through microvascular capillary networks.
    Pozrikidis C
    Bull Math Biol; 2009 Aug; 71(6):1520-41. PubMed ID: 19267162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of characteristic of the vasomotor control dynamics based on plethysmographic blood flow measurement.
    de Macedo AR; da Nobrega AC; Machado JC; de Souza MN
    Physiol Meas; 2008 Feb; 29(2):205-15. PubMed ID: 18256452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood flow and macromolecular transport in complex blood vessels.
    Hong J; Wei L; Fu C; Tan W
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S125-9. PubMed ID: 17767985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of the method of characteristics for the study of shock waves in models of blood flow in the aorta.
    Shoucri RM; Shoucri MM
    Cardiovasc Eng; 2007 Mar; 7(1):1-6. PubMed ID: 17342422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.