BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16637602)

  • 1. Rapid freeze-quench ENDOR study of chloroperoxidase compound I: the site of the radical.
    Kim SH; Perera R; Hager LP; Dawson JH; Hoffman BM
    J Am Chem Soc; 2006 May; 128(17):5598-9. PubMed ID: 16637602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman spectroscopy of oxoiron(IV) porphyrin pi-cation radical and oxoiron(IV) hemes in peroxidase intermediates.
    Terner J; Palaniappan V; Gold A; Weiss R; Fitzgerald MM; Sullivan AM; Hosten CM
    J Inorg Biochem; 2006 Apr; 100(4):480-501. PubMed ID: 16513173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EPR detection and characterization of lignin peroxidase porphyrin pi-cation radical.
    Khindaria A; Aust SD
    Biochemistry; 1996 Oct; 35(40):13107-11. PubMed ID: 8855947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectroscopic studies of peroxyacetic acid reaction intermediates of cytochrome P450cam and chloroperoxidase.
    Schünemann V; Jung C; Terner J; Trautwein AX; Weiss R
    J Inorg Biochem; 2002 Sep; 91(4):586-96. PubMed ID: 12237224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the heme iron coordination structure of alkaline chloroperoxidase.
    Blanke SR; Martinis SA; Sligar SG; Hager LP; Rux JJ; Dawson JH
    Biochemistry; 1996 Nov; 35(46):14537-43. PubMed ID: 8931550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing the electronic properties of the low-spin cyano-ferric [Fe(N4)(Cys)] active sites of superoxide reductase and p450cam using ENDOR spectroscopy and DFT calculations.
    Yang TC; McNaughton RL; Clay MD; Jenney FE; Krishnan R; Kurtz DM; Adams MW; Johnson MK; Hoffman BM
    J Am Chem Soc; 2006 Dec; 128(51):16566-78. PubMed ID: 17177406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum mechanical/molecular mechanical study on the mechanisms of compound I formation in the catalytic cycle of chloroperoxidase: an overview on heme enzymes.
    Chen H; Hirao H; Derat E; Schlichting I; Shaik S
    J Phys Chem B; 2008 Aug; 112(31):9490-500. PubMed ID: 18597525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EPR investigation of compound I in Proteus mirabilis and bovine liver catalases: formation of porphyrin and tyrosyl radical intermediates.
    Ivancich A; Jouve HM; Sartor B; Gaillard J
    Biochemistry; 1997 Aug; 36(31):9356-64. PubMed ID: 9235978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450.
    Jung C; Schünemann V; Lendzian F; Trautwein AX; Contzen J; Galander M; Böttger LH; Richter M; Barra AL
    Biol Chem; 2005 Oct; 386(10):1043-53. PubMed ID: 16218876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of substrate, protein environment, and proximal ligand mutation on compound I and compound 0 of chloroperoxidase.
    Lai W; Chen H; Cho KB; Shaik S
    J Phys Chem A; 2009 Oct; 113(43):11763-71. PubMed ID: 19572690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Freeze-quenched iron-oxo intermediates in cytochromes P450.
    Jung C; Schünemann V; Lendzian F
    Biochem Biophys Res Commun; 2005 Dec; 338(1):355-64. PubMed ID: 16143295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure of six-coordinate iron(III)-porphyrin NO adducts: the elusive iron(III)-NO(radical) state and its influence on the properties of these complexes.
    Praneeth VK; Paulat F; Berto TC; George SD; Näther C; Sulok CD; Lehnert N
    J Am Chem Soc; 2008 Nov; 130(46):15288-303. PubMed ID: 18942830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of electrostatics and salt bridges in stabilizing the compound I radical in ascorbate peroxidase.
    Barrows TP; Poulos TL
    Biochemistry; 2005 Nov; 44(43):14062-8. PubMed ID: 16245922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EPR and ENDOR studies of cryoreduced compounds II of peroxidases and myoglobin. Proton-coupled electron transfer and protonation status of ferryl hemes.
    Davydov R; Osborne RL; Kim SH; Dawson JH; Hoffman BM
    Biochemistry; 2008 May; 47(18):5147-55. PubMed ID: 18407661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ENDOR investigation of the liganding environment of mixed-spin ferric cytochrome c'.
    Usov OM; Choi PS; Shapleigh JP; Scholes CP
    J Am Chem Soc; 2005 Jul; 127(26):9485-94. PubMed ID: 15984875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What affects the quartet-doublet energy splitting in peroxidase enzymes?
    de Visser SP
    J Phys Chem A; 2005 Dec; 109(48):11050-7. PubMed ID: 16331950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid kinetics investigations of peracid oxidation of ferric cytochrome P450cam: nature and possible function of compound ES.
    Spolitak T; Dawson JH; Ballou DP
    J Inorg Biochem; 2006 Dec; 100(12):2034-44. PubMed ID: 17095096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternatives to the oxoferryl porphyrin cation radical as the proposed reactive intermediate of cytochrome P450: two-electron oxidized Fe(III) porphyrin derivatives.
    Watanabe Y
    J Biol Inorg Chem; 2001 Oct; 6(8):846-56. PubMed ID: 11713692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic characterization of cytochrome P450 Compound I.
    Jung C; de Vries S; Schünemann V
    Arch Biochem Biophys; 2011 Mar; 507(1):44-55. PubMed ID: 21195047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the oxyferrous and catalytically active ferryl states of Amphitrite ornata dehaloperoxidase by cryoreduction and EPR/ENDOR spectroscopy. Detection of compound I.
    Davydov R; Osborne RL; Shanmugam M; Du J; Dawson JH; Hoffman BM
    J Am Chem Soc; 2010 Oct; 132(42):14995-5004. PubMed ID: 20925340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.