These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16637639)

  • 1. Functional dynamics of human FKBP12 revealed by methyl 13C rotating frame relaxation dispersion NMR spectroscopy.
    Brath U; Akke M; Yang D; Kay LE; Mulder FA
    J Am Chem Soc; 2006 May; 128(17):5718-27. PubMed ID: 16637639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding.
    Korzhnev DM; Kay LE
    Acc Chem Res; 2008 Mar; 41(3):442-51. PubMed ID: 18275162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing methyl dynamics from 13C autocorrelated and cross-correlated relaxation.
    Zhang X; Sui X; Yang D
    J Am Chem Soc; 2006 Apr; 128(15):5073-81. PubMed ID: 16608341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential responses of the backbone and side-chain conformational dynamics in FKBP12 upon binding the transition-state analog FK506: implications for transition-state stabilization and target protein recognition.
    Brath U; Akke M
    J Mol Biol; 2009 Mar; 387(1):233-44. PubMed ID: 19361439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsecond protein dynamics measured by 13Calpha rotating-frame spin relaxation.
    Lundström P; Akke M
    Chembiochem; 2005 Sep; 6(9):1685-92. PubMed ID: 16028301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relaxation rates of degenerate 1H transitions in methyl groups of proteins as reporters of side-chain dynamics.
    Tugarinov V; Kay LE
    J Am Chem Soc; 2006 Jun; 128(22):7299-308. PubMed ID: 16734484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of methyl 13C-15N dipolar couplings in peptides and proteins by three-dimensional and four-dimensional magic-angle spinning solid-state NMR spectroscopy.
    Helmus JJ; Nadaud PS; Höfer N; Jaroniec CP
    J Chem Phys; 2008 Feb; 128(5):052314. PubMed ID: 18266431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing side-chain dynamics in the proteasome by relaxation violated coherence transfer NMR spectroscopy.
    Tugarinov V; Sprangers R; Kay LE
    J Am Chem Soc; 2007 Feb; 129(6):1743-50. PubMed ID: 17249677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 2H NMR relaxation experiment for the measurement of the time scale of methyl side-chain dynamics in large proteins.
    Tugarinov V; Kay LE
    J Am Chem Soc; 2006 Sep; 128(38):12484-9. PubMed ID: 16984199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthetic 13C labeling of aromatic side chains in proteins for NMR relaxation measurements.
    Teilum K; Brath U; Lundström P; Akke M
    J Am Chem Soc; 2006 Mar; 128(8):2506-7. PubMed ID: 16492013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk.
    Yang D; Mittermaier A; Mok YK; Kay LE
    J Mol Biol; 1998 Mar; 276(5):939-54. PubMed ID: 9566198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A suite of 2H NMR spin relaxation experiments for the measurement of RNA dynamics.
    Vallurupalli P; Kay LE
    J Am Chem Soc; 2005 May; 127(18):6893-901. PubMed ID: 15869313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR studies of protein structure and dynamics.
    Kay LE
    J Magn Reson; 2005 Apr; 173(2):193-207. PubMed ID: 15780912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paramagnetic ions enable tuning of nuclear relaxation rates and provide long-range structural restraints in solid-state NMR of proteins.
    Nadaud PS; Helmus JJ; Kall SL; Jaroniec CP
    J Am Chem Soc; 2009 Jun; 131(23):8108-20. PubMed ID: 19445506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein side-chain dynamics as observed by solution- and solid-state NMR spectroscopy: a similarity revealed.
    Agarwal V; Xue Y; Reif B; Skrynnikov NR
    J Am Chem Soc; 2008 Dec; 130(49):16611-21. PubMed ID: 19049457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes.
    Tugarinov V; Hwang PM; Ollerenshaw JE; Kay LE
    J Am Chem Soc; 2003 Aug; 125(34):10420-8. PubMed ID: 12926967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the kinetic landscape of transient peptide-protein interactions by use of peptide (15)n NMR relaxation dispersion spectroscopy: binding of an antithrombin peptide to human prothrombin.
    Tolkatchev D; Xu P; Ni F
    J Am Chem Soc; 2003 Oct; 125(41):12432-42. PubMed ID: 14531686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative 13C and 2H NMR relaxation studies of the 723-residue enzyme malate synthase G reveal a dynamic binding interface.
    Tugarinov V; Kay LE
    Biochemistry; 2005 Dec; 44(49):15970-7. PubMed ID: 16331956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct 13C-detection for carbonyl relaxation studies of protein dynamics.
    Pasat G; Zintsmaster JS; Peng JW
    J Magn Reson; 2008 Aug; 193(2):226-32. PubMed ID: 18514001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.