BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16639746)

  • 1. Assessing the acid-base and conformational properties of histidine residues in human prion protein (125-228) by means of pK(a) calculations and molecular dynamics simulations.
    Langella E; Improta R; Crescenzi O; Barone V
    Proteins; 2006 Jul; 64(1):167-77. PubMed ID: 16639746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanism for low pH triggered misfolding of the human prion protein.
    DeMarco ML; Daggett V
    Biochemistry; 2007 Mar; 46(11):3045-54. PubMed ID: 17315950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Checking the pH-induced conformational transition of prion protein by molecular dynamics simulations: effect of protonation of histidine residues.
    Langella E; Improta R; Barone V
    Biophys J; 2004 Dec; 87(6):3623-32. PubMed ID: 15377536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational polymorphism of the PrP106-126 peptide in different environments: a molecular dynamics study.
    Villa A; Mark AE; Saracino GA; Cosentino U; Pitea D; Moro G; Salmona M
    J Phys Chem B; 2006 Jan; 110(3):1423-8. PubMed ID: 16471693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of copper(II) with the prion peptide fragment HuPrP(76-114) encompassing four histidyl residues within and outside the octarepeat domain.
    Di Natale G; Osz K; Nagy Z; Sanna D; Micera G; Pappalardo G; Sóvágó I; Rizzarell E
    Inorg Chem; 2009 May; 48(9):4239-50. PubMed ID: 19348438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling the role of histidine and tyrosine residues on the conformation of the avian prion hexarepeat domain.
    Pietropaolo A; Muccioli L; Zannoni C; La Mendola D; Maccarrone G; Pappalardo G; Rizzarelli E
    J Phys Chem B; 2008 Apr; 112(16):5182-8. PubMed ID: 18386869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational studies on prion proteins: effect of Ala(117)-->Val mutation.
    Okimoto N; Yamanaka K; Suenaga A; Hata M; Hoshino T
    Biophys J; 2002 May; 82(5):2746-57. PubMed ID: 11964260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous beta-helical fold in prion protein: the case of PrP(82-146).
    Saracino GA; Villa A; Moro G; Cosentino U; Salmona M
    Proteins; 2009 Jun; 75(4):964-76. PubMed ID: 19089953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the pK(a) of the four Zn2+-coordinating residues of the distal finger motif of the HIV-1 nucleocapsid protein: consequences on the binding of Zn2+.
    Bombarda E; Morellet N; Cherradi H; Spiess B; Bouaziz S; Grell E; Roques BP; Mély Y
    J Mol Biol; 2001 Jul; 310(3):659-72. PubMed ID: 11439030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational properties of peptide fragments homologous to the 106-114 and 106-126 residues of the human prion protein: a CD and NMR spectroscopic study.
    Di Natale G; Impellizzeri G; Pappalardo G
    Org Biomol Chem; 2005 Feb; 3(3):490-7. PubMed ID: 15678187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper(II) interaction with prion peptide fragments encompassing histidine residues within and outside the octarepeat domain: speciation, stability constants and binding details.
    Osz K; Nagy Z; Pappalardo G; Di Natale G; Sanna D; Micera G; Rizzarelli E; Sóvágó I
    Chemistry; 2007; 13(25):7129-43. PubMed ID: 17566127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histidine protonation and the activation of viral fusion proteins.
    Mueller DS; Kampmann T; Yennamalli R; Young PR; Kobe B; Mark AE
    Biochem Soc Trans; 2008 Feb; 36(Pt 1):43-5. PubMed ID: 18208382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake.
    Miura T; Sasaki S; Toyama A; Takeuchi H
    Biochemistry; 2005 Jun; 44(24):8712-20. PubMed ID: 15952778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics study of the fibril elongation of the prion protein fragment PrP106-126.
    Zhang Y; Zhao X; Wang PY
    J Theor Biol; 2007 Mar; 245(2):238-42. PubMed ID: 17166520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics study of the Cu2+ binding-induced "structuring" of the N-terminal domain of human prion protein.
    Valensin G; Molteni E; Valensin D; Taraszkiewicz M; Kozlowski H
    J Phys Chem B; 2009 Mar; 113(11):3277-9. PubMed ID: 19236027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role for His155 in binding of human prion peptide144-167 to immobilised prion protein.
    Hesp JR; Raven ND; Sutton JM
    Biochem Biophys Res Commun; 2007 Oct; 362(3):695-9. PubMed ID: 17761148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH titration studies of an SH2 domain-phosphopeptide complex: unusual histidine and phosphate pKa values.
    Singer AU; Forman-Kay JD
    Protein Sci; 1997 Sep; 6(9):1910-9. PubMed ID: 9300491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational studies on a synthetic C-terminal fragment of the alpha subunit of G(S) proteins.
    Albrizio S; D'Ursi A; Fattorusso C; Galoppini C; Greco G; Mazzoni MR; Novellino E; Rovero P
    Biopolymers; 2000 Sep; 54(3):186-94. PubMed ID: 10861380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions.
    Zuegg J; Gready JE
    Biochemistry; 1999 Oct; 38(42):13862-76. PubMed ID: 10529232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-range nature of the interactions between titratable groups in Bacillus agaradhaerens family 11 xylanase: pH titration of B. agaradhaerens xylanase.
    Betz M; Löhr F; Wienk H; Rüterjans H
    Biochemistry; 2004 May; 43(19):5820-31. PubMed ID: 15134456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.