These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 16640)

  • 21. Acid-base catalysis in the argininosuccinate lyase reaction.
    Garrard LJ; Bui QT; Nygaard R; Raushel FM
    J Biol Chem; 1985 May; 260(9):5548-53. PubMed ID: 3988765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic study of the catalytic mechanism of mannitol dehydrogenase from Pseudomonas fluorescens.
    Slatner M; Nidetzky B; Kulbe KD
    Biochemistry; 1999 Aug; 38(32):10489-98. PubMed ID: 10441145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH dependence of the reverse reaction catalyzed by phosphofructokinase I from Escherichia coli: implications for the role of Asp 127.
    Auzat I; Garel JR
    Protein Sci; 1992 Feb; 1(2):254-8. PubMed ID: 1304907
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The mechanism of guanosine triphosphate depletion in the liver after a fructose load. The role of fructokinase.
    Phillips MI; Davies DR
    Biochem J; 1985 Jun; 228(3):667-71. PubMed ID: 2992452
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic and chemical mechanisms of the sheep liver 6-phosphogluconate dehydrogenase.
    Price NE; Cook PF
    Arch Biochem Biophys; 1996 Dec; 336(2):215-23. PubMed ID: 8954568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 31P NMR studies of the arginine kinase reaction. Equilibrium constants and exchange rates at stoichiometric enzyme concentration.
    Rao BD; Buttlaire DH; Cohn M
    J Biol Chem; 1976 Nov; 251(22):6981-6. PubMed ID: 186451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical mechanism of saccharopine dehydrogenase (NAD+, L-lysine-forming) as deduced from initial rate pH studies.
    Fujioka M
    Arch Biochem Biophys; 1984 May; 230(2):553-9. PubMed ID: 6712252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The isotope-exchange reactions of ox heart phosphofructokinase.
    Hulme EC; Tipton KF
    Biochem J; 1971 Apr; 122(2):181-7. PubMed ID: 4256093
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic studies with liver galactokinase.
    Ballard FJ
    Biochem J; 1966 Oct; 101(1):70-5. PubMed ID: 5971794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The determination of enzyme-substrate dissociation rates by dynamic isotope exchange enhancement experiments.
    Kim SC; Raushel FM
    J Biol Chem; 1986 Jun; 261(18):8163-6. PubMed ID: 3522565
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor.
    Woodward CK; Hilton BD
    Biophys J; 1980 Oct; 32(1):561-75. PubMed ID: 7248461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of rabbit muscle phosphofructokinase at pH8.
    Merry S; Britton HG
    Biochem J; 1985 Feb; 226(1):13-28. PubMed ID: 3156586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isotope effects and alternative substrate reactivities for tryptophan 2,3-dioxygenase.
    Leeds JM; Brown PJ; McGeehan GM; Brown FK; Wiseman JS
    J Biol Chem; 1993 Aug; 268(24):17781-6. PubMed ID: 8349662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of the screw sense specificity of bovine liver fructokinase.
    Pecoraro VL; Rendina AR; Cleland WW
    Biochemistry; 1985 Mar; 24(7):1619-22. PubMed ID: 2988605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The equilibrium constant and the reversibility of the reaction catalysed by nicotinamide-adenine dinucleotide kinase from pigeon liver.
    Apps DK; Nairn AC
    Biochem J; 1977 Oct; 167(1):87-93. PubMed ID: 201249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. pH dependence of the kinetic parameters for the pyrophosphate-dependent phosphofructokinase reaction supports a proton-shuttle mechanism.
    Cho YK; Cook PF
    Biochemistry; 1989 May; 28(10):4155-60. PubMed ID: 2548569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanistic deductions from isotope effects in multireactant enzyme mechanisms.
    Cook PF; Cleland WW
    Biochemistry; 1981 Mar; 20(7):1790-6. PubMed ID: 7013799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimum activity of the phosphofructokinase from Ascaris suum requires more than one metal ion.
    Gibson GE; Harris BG; Cook PF
    Biochemistry; 2006 Feb; 45(7):2453-60. PubMed ID: 16475835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for an induced conformational change in the catalytic mechanism of homoisocitrate dehydrogenase for Saccharomyces cerevisiae: Characterization of the D271N mutant enzyme.
    Hsu C; West AH; Cook PF
    Arch Biochem Biophys; 2015 Oct; 584():20-7. PubMed ID: 26325079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.