BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 1664031)

  • 1. Protein-DNA interactions in vivo--examining genes in Saccharomyces cerevisiae and Drosophila melanogaster by chromatin footprinting.
    Hull MW; Thomas G; Huibregtse JM; Engelke DR
    Methods Cell Biol; 1991; 35():383-415. PubMed ID: 1664031
    [No Abstract]   [Full Text] [Related]  

  • 2. In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p.
    Kent NA; Karabetsou N; Politis PK; Mellor J
    Genes Dev; 2001 Mar; 15(5):619-26. PubMed ID: 11238381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Structural and functional chromatin organization of the SUP35 gene in Saccharomyces cerevisiae yeast].
    Riabinkova NA; Vodop'ianova LG; Samsonova MG; Miasikova EM; Osipova TN
    Genetika; 1997 Apr; 33(4):451-7. PubMed ID: 9206662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cloning and characterization of the homologue of the Saccharomyces cerevisiae gene in Drosophila melanogaster].
    Nabirochkina EN; Grishchuk AL; Soldatov AV
    Genetika; 1999 Jul; 35(7):1012-5. PubMed ID: 10519079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo topography of Rap1p-DNA complex at Saccharomyces cerevisiae TEF2 UAS(RPG) during transcriptional regulation.
    De Sanctis V; La Terra S; Bianchi A; Shore D; Burderi L; Di Mauro E; Negri R
    J Mol Biol; 2002 Apr; 318(2):333-49. PubMed ID: 12051841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the structure of a natural alternating d(TA)n sequence in yeast chromatin.
    Aranda A; Pérez-Ortín JE; Benham CJ; Del Olmo ML
    Yeast; 1997 Mar; 13(4):313-26. PubMed ID: 9133735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Chromatin structure of ribosomal genes of Drosophila melanogaster. Random location of nucleosomes in DNA and characteristics of organization of non-transcribed spacer].
    Kolchinskiĭ AM; Vashakidze RP; Preobrazhenskaia OV; Karpov VL; Mirzabekov AD
    Mol Biol (Mosk); 1984; 18(4):1141-50. PubMed ID: 6095027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin organization of the Saccharomyces cerevisiae 2 microns plasmid depends on plasmid-encoded products.
    Veit BE; Fangman WL
    Mol Cell Biol; 1985 Sep; 5(9):2190-6. PubMed ID: 3939256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromatin structure of the yeast FBP1 gene: transcription-dependent changes in the regulatory and coding regions.
    del Olmo ML; Sogo JM; Franco L; Pérez-Ortín JE
    Yeast; 1993 Nov; 9(11):1229-40. PubMed ID: 8109172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleosome structure and positioning modulate nucleotide excision repair in the non-transcribed strand of an active gene.
    Wellinger RE; Thoma F
    EMBO J; 1997 Aug; 16(16):5046-56. PubMed ID: 9305646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context.
    Tanaka S; Livingstone-Zatchej M; Thoma F
    J Mol Biol; 1996 Apr; 257(5):919-34. PubMed ID: 8632475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The open reading frame YCR101 located on chromosome III from Saccharomyces cerevisiae is a putative protein kinase.
    Skala J; Purnelle B; Crouzet M; Aigle M; Goffeau A
    Yeast; 1991; 7(6):651-5. PubMed ID: 1767593
    [No Abstract]   [Full Text] [Related]  

  • 13. Sequence of a segment of yeast chromosome II shows two novel genes, one almost entirely hydrophobic and the other extremely asparagine-serine rich.
    Cusick ME
    Yeast; 1994 Sep; 10(9):1251-6. PubMed ID: 7754714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning of DNAs encoding the regulatory subunits of elongin from Saccharomyces cerevisiae and Drosophila melanogaster.
    Aso T; Conrad MN
    Biochem Biophys Res Commun; 1997 Dec; 241(2):334-40. PubMed ID: 9425272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cloning of segments of the Drosophila melanogaster genome using artificial chromosomes of the yeast Saccharomyces cerevisiae].
    Kogan GL; Filipp D; Arman IP; Leĭbovich BA; Beliaeva ES
    Genetika; 1991 Aug; 27(8):1316-23. PubMed ID: 1761208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin structure snap-shots: rapid nuclease digestion of chromatin in yeast.
    Kent NA; Mellor J
    Nucleic Acids Res; 1995 Sep; 23(18):3786-7. PubMed ID: 7479011
    [No Abstract]   [Full Text] [Related]  

  • 17. High-resolution mapping of DNase I-hypersensitive sites of Drosophila heat shock genes in Drosophila melanogaster and Saccharomyces cerevisiae.
    Costlow N; Lis JT
    Mol Cell Biol; 1984 Sep; 4(9):1853-63. PubMed ID: 6436689
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cleavage reagents as probes of DNA sequence organization and chromatin structure: Drosophila melanogaster locus 67B1.
    Elgin SC; Cartwright IL; Fleischmann G; Lowenhaupt K; Keene MA
    Cold Spring Harb Symp Quant Biol; 1983; 47 Pt 1():529-38. PubMed ID: 6305565
    [No Abstract]   [Full Text] [Related]  

  • 19. In vivo analysis of chromatin following nystatin-mediated import of active enzymes into Saccharomyces cerevisiae.
    Venditti S; Camilloni G
    Mol Gen Genet; 1994 Jan; 242(1):100-4. PubMed ID: 8277940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal promoter elements of transfer RNA genes are preferentially exposed in chromatin.
    DeLotto R; Schedl P
    J Mol Biol; 1984 Nov; 179(4):607-28. PubMed ID: 6094830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.