These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 16640403)
1. Calculation of activation energies for transport and recombination in mesoporous TiO2/dye/electrolyte films--taking into account surface charge shifts with temperature. O'Regan BC; Durrant JR J Phys Chem B; 2006 May; 110(17):8544-7. PubMed ID: 16640403 [TBL] [Abstract][Full Text] [Related]
2. Direct measurement of the temperature coefficient of the electron quasi-fermi level in dye-sensitized nanocrystalline solar cells using a titanium sensor electrode. Lobato K; Peter LM J Phys Chem B; 2006 Nov; 110(43):21920-3. PubMed ID: 17064159 [TBL] [Abstract][Full Text] [Related]
3. Activation energy of electron transport in dye-sensitized TiO2 solar cells. Boschloo G; Hagfeldt A J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492 [TBL] [Abstract][Full Text] [Related]
4. Influence of sodium cations of N3 dye on the photovoltaic performance and stability of dye-sensitized solar cells. Andrade L; Zakeeruddin SM; Nazeeruddin MK; Ribeiro HA; Mendes A; Grätzel M Chemphyschem; 2009 May; 10(7):1117-24. PubMed ID: 19308974 [TBL] [Abstract][Full Text] [Related]
5. Inhomogeneity of electron injection rates in dye-sensitized TiO2: comparison of the mesoporous film and single nanoparticle behavior. Bell TD; Pagba C; Myahkostupov M; Hofkens J; Piotrowiak P J Phys Chem B; 2006 Dec; 110(50):25314-21. PubMed ID: 17165977 [TBL] [Abstract][Full Text] [Related]
6. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells. Zhu K; Kopidakis N; Neale NR; van de Lagemaat J; Frank AJ J Phys Chem B; 2006 Dec; 110(50):25174-80. PubMed ID: 17165961 [TBL] [Abstract][Full Text] [Related]
7. Chlorophyll-a derivatives with various hydrocarbon ester groups for efficient dye-sensitized solar cells: static and ultrafast evaluations on electron injection and charge collection processes. Wang XF; Tamiaki H; Wang L; Tamai N; Kitao O; Zhou H; Sasaki S Langmuir; 2010 May; 26(9):6320-7. PubMed ID: 20380394 [TBL] [Abstract][Full Text] [Related]
8. Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films. O'Regan BC; Bakker K; Kroeze J; Smit H; Sommeling P; Durrant JR J Phys Chem B; 2006 Aug; 110(34):17155-60. PubMed ID: 16928011 [TBL] [Abstract][Full Text] [Related]
9. Preparation of TiO₂ nanowires/nanotubes using polycarbonate membranes and their uses in dye-sensitized solar cells. Roh DK; Patel R; Ahn SH; Kim DJ; Kim JH Nanoscale; 2011 Oct; 3(10):4162-9. PubMed ID: 21894346 [TBL] [Abstract][Full Text] [Related]
10. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands. Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932 [TBL] [Abstract][Full Text] [Related]
11. The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. O'Regan BC; Scully S; Mayer AC; Palomares E; Durrant J J Phys Chem B; 2005 Mar; 109(10):4616-23. PubMed ID: 16851540 [TBL] [Abstract][Full Text] [Related]
13. Self-assembled TiO₂ with increased photoelectron production, and improved conduction and transfer: enhancing photovoltaic performance of dye-sensitized solar cells. Ahmed S; Du Pasquier A; Birnie DP; Asefa T ACS Appl Mater Interfaces; 2011 Aug; 3(8):3002-10. PubMed ID: 21714503 [TBL] [Abstract][Full Text] [Related]
14. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules. Hu L; Dai S; Weng J; Xiao S; Sui Y; Huang Y; Chen S; Kong F; Pan X; Liang L; Wang K J Phys Chem B; 2007 Jan; 111(2):358-62. PubMed ID: 17214486 [TBL] [Abstract][Full Text] [Related]
15. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. Bisquert J; Zaban A; Greenshtein M; Mora-Seró I J Am Chem Soc; 2004 Oct; 126(41):13550-9. PubMed ID: 15479112 [TBL] [Abstract][Full Text] [Related]
16. Titania nanobundle networks as dye-sensitized solar cell photoanodes. Dong C; Xiang W; Huang F; Fu D; Huang W; Bach U; Cheng YB; Li X; Spiccia L Nanoscale; 2014 Apr; 6(7):3704-11. PubMed ID: 24567234 [TBL] [Abstract][Full Text] [Related]
17. Molecular adjustment of the electronic properties of nanoporous electrodes in dye-sensitized solar cells. Rühle S; Greenshtein M; Chen SG; Merson A; Pizem H; Sukenik CS; Cahen D; Zaban A J Phys Chem B; 2005 Oct; 109(40):18907-13. PubMed ID: 16853434 [TBL] [Abstract][Full Text] [Related]
18. Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. Sommeling PM; O'Regan BC; Haswell RR; Smit HJ; Bakker NJ; Smits JJ; Kroon JM; van Roosmalen JA J Phys Chem B; 2006 Oct; 110(39):19191-7. PubMed ID: 17004768 [TBL] [Abstract][Full Text] [Related]
19. The influence of charge transport and recombination on the performance of dye-sensitized solar cells. Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326 [TBL] [Abstract][Full Text] [Related]
20. Enhanced photovoltaic performance of nanowire dye-sensitized solar cells based on coaxial TiO2@TiO heterostructures with a cobalt(II/III) redox electrolyte. Fan J; Fàbrega C; Zamani RR; Hao Y; Parra A; Andreu T; Arbiol J; Boschloo G; Hagfeldt A; Morante JR; Cabot A ACS Appl Mater Interfaces; 2013 Oct; 5(20):9872-7. PubMed ID: 24025444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]