These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16640499)

  • 1. Drug delivery strategies using polysaccharidic gels.
    Coviello T; Matricardi P; Alhaique F
    Expert Opin Drug Deliv; 2006 May; 3(3):395-404. PubMed ID: 16640499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polysaccharide hydrogels for modified release formulations.
    Coviello T; Matricardi P; Marianecci C; Alhaique F
    J Control Release; 2007 May; 119(1):5-24. PubMed ID: 17382422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering.
    Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F
    Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xyloglucan as green renewable biopolymer used in drug delivery and tissue engineering.
    Dutta P; Giri S; Giri TK
    Int J Biol Macromol; 2020 Oct; 160():55-68. PubMed ID: 32450326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Synthetic Toolbox for the In Situ Formation of Functionalized Homo- and Heteropolysaccharide-Based Hydrogel Libraries.
    Dibbert N; Krause A; Rios-Camacho JC; Gruh I; Kirschning A; Dräger G
    Chemistry; 2016 Dec; 22(52):18777-18786. PubMed ID: 27864999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algal Polysaccharides-Based Hydrogels: Extraction, Synthesis, Characterization, and Applications.
    Lin J; Jiao G; Kermanshahi-Pour A
    Mar Drugs; 2022 Apr; 20(5):. PubMed ID: 35621958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties of xyloglucan hydrogel as the biomedical sustained-release carriers.
    Chen D; Guo P; Chen S; Cao Y; Ji W; Lei X; Liu L; Zhao P; Wang R; Qi C; Liu Y; He H
    J Mater Sci Mater Med; 2012 Apr; 23(4):955-62. PubMed ID: 22354327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiresponsive hydrogels based on xylan-type hemicelluloses and photoisomerized azobenzene copolymer as drug delivery carrier.
    Cao X; Peng X; Zhong L; Sun R
    J Agric Food Chem; 2014 Oct; 62(41):10000-7. PubMed ID: 25260117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ gelling xyloglucan/alginate liquid formulation for oral sustained drug delivery to dysphagic patients.
    Itoh K; Tsuruya R; Shimoyama T; Watanabe H; Miyazaki S; D'Emanuele A; Attwood D
    Drug Dev Ind Pharm; 2010 Apr; 36(4):449-55. PubMed ID: 19788404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of alginate and sterculia gum based hydrogel for brain drug delivery applications.
    Singh B; Kumar A; Rohit
    Int J Biol Macromol; 2020 Apr; 148():248-257. PubMed ID: 31954791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scleroglucan: a versatile polysaccharide for modified drug delivery.
    Coviello T; Palleschi A; Grassi M; Matricardi P; Bocchinfuso G; Alhaique F
    Molecules; 2005 Jan; 10(1):6-33. PubMed ID: 18007275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible Double-Membrane Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Codelivery.
    Lin N; Gèze A; Wouessidjewe D; Huang J; Dufresne A
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):6880-9. PubMed ID: 26925765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting.
    Abasalizadeh F; Moghaddam SV; Alizadeh E; Akbari E; Kashani E; Fazljou SMB; Torbati M; Akbarzadeh A
    J Biol Eng; 2020; 14():8. PubMed ID: 32190110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite alginate hydrogels: An innovative approach for the controlled release of hydrophobic drugs.
    Josef E; Zilberman M; Bianco-Peled H
    Acta Biomater; 2010 Dec; 6(12):4642-9. PubMed ID: 20601237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery.
    Chalanqui MJ; Pentlavalli S; McCrudden C; Chambers P; Ziminska M; Dunne N; McCarthy HO
    Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():409-421. PubMed ID: 30573265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent strategies to develop polysaccharide-based nanomaterials for biomedical applications.
    Wen Y; Oh JK
    Macromol Rapid Commun; 2014 Nov; 35(21):1819-32. PubMed ID: 25283788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermally reversible xyloglucan gels as vehicles for nasal drug delivery.
    Mahajan HS; Tyagi V; Lohiya G; Nerkar P
    Drug Deliv; 2012; 19(5):270-6. PubMed ID: 22823894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and gelation of thermosensitive xyloglucan hydrogels.
    Nisbet DR; Crompton KE; Hamilton SD; Shirakawa S; Prankerd RJ; Finkelstein DI; Horne MK; Forsythe JS
    Biophys Chem; 2006 Apr; 121(1):14-20. PubMed ID: 16406645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials.
    Prabaharan M; Mano JF
    Macromol Biosci; 2006 Dec; 6(12):991-1008. PubMed ID: 17128423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Functionalization of Polysaccharides-Towards Biocompatible Hydrogels for Biomedical Applications.
    Kirschning A; Dibbert N; Dräger G
    Chemistry; 2018 Jan; 24(6):1231-1240. PubMed ID: 28804933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.