BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 16641134)

  • 1. Assembly of the phagocyte NADPH oxidase complex: chimeric constructs derived from the cytosolic components as tools for exploring structure-function relationships.
    Mizrahi A; Berdichevsky Y; Ugolev Y; Molshanski-Mor S; Nakash Y; Dahan I; Alloul N; Gorzalczany Y; Sarfstein R; Hirshberg M; Pick E
    J Leukoc Biol; 2006 May; 79(5):881-95. PubMed ID: 16641134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A region N-terminal to the tandem SH3 domain of p47phox plays a crucial role in the activation of the phagocyte NADPH oxidase.
    Taura M; Miyano K; Minakami R; Kamakura S; Takeya R; Sumimoto H
    Biochem J; 2009 Apr; 419(2):329-38. PubMed ID: 19090790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rac1 disrupts p67phox/p40phox binding: a novel role for Rac in NADPH oxidase activation.
    Rinckel LA; Faris SL; Hitt ND; Kleinberg ME
    Biochem Biophys Res Commun; 1999 Sep; 263(1):118-22. PubMed ID: 10486263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of novel effector domains in Rac1 involved in the activation of nicotinamide adenine dinucleotide phosphate (reduced) oxidase.
    Toporik A; Gorzalczany Y; Hirshberg M; Pick E; Lotan O
    Biochemistry; 1998 May; 37(20):7147-56. PubMed ID: 9585526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual role of Rac in the assembly of NADPH oxidase, tethering to the membrane and activation of p67phox: a study based on mutagenesis of p67phox-Rac1 chimeras.
    Sarfstein R; Gorzalczany Y; Mizrahi A; Berdichevsky Y; Molshanski-Mor S; Weinbaum C; Hirshberg M; Dagher MC; Pick E
    J Biol Chem; 2004 Apr; 279(16):16007-16. PubMed ID: 14761978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A prenylated p67phox-Rac1 chimera elicits NADPH-dependent superoxide production by phagocyte membranes in the absence of an activator and of p47phox: conversion of a pagan NADPH oxidase to monotheism.
    Gorzalczany Y; Alloul N; Sigal N; Weinbaum C; Pick E
    J Biol Chem; 2002 May; 277(21):18605-10. PubMed ID: 11896062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phagocyte NADPH oxidase depends on cholesterol-enriched membrane microdomains for assembly.
    Vilhardt F; van Deurs B
    EMBO J; 2004 Feb; 23(4):739-48. PubMed ID: 14765128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles for proline-rich regions of p47phox and p67phox in the phagocyte NADPH oxidase activation in vitro.
    Hata K; Takeshige K; Sumimoto H
    Biochem Biophys Res Commun; 1997 Dec; 241(2):226-31. PubMed ID: 9425254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two pathways of activation of the superoxide-generating NADPH oxidase of phagocytes in vitro--distinctive effects of inhibitors.
    Sigal N; Gorzalczany Y; Pick E
    Inflammation; 2003 Jun; 27(3):147-59. PubMed ID: 12875368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tripartite chimeras comprising functional domains derived from the cytosolic NADPH oxidase components p47phox, p67phox, and Rac1 elicit activator-independent superoxide production by phagocyte membranes: an essential role for anionic membrane phospholipids.
    Berdichevsky Y; Mizrahi A; Ugolev Y; Molshanski-Mor S; Pick E
    J Biol Chem; 2007 Jul; 282(30):22122-39. PubMed ID: 17548354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipopolysaccharide primes the respiratory burst of Atlantic salmon SHK-1 cells through protein kinase C-mediated phosphorylation of p47phox.
    Olavarría VH; Gallardo L; Figueroa JE; Mulero V
    Dev Comp Immunol; 2010 Dec; 34(12):1242-53. PubMed ID: 20621116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of the superoxide-generating NADPH oxidase by chimeric proteins consisting of segments of the cytosolic component p67(phox) and the small GTPase Rac1.
    Alloul N; Gorzalczany Y; Itan M; Sigal N; Pick E
    Biochemistry; 2001 Dec; 40(48):14557-66. PubMed ID: 11724569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses.
    El-Benna J; Dang PM; Gougerot-Pocidalo MA; Elbim C
    Arch Immunol Ther Exp (Warsz); 2005; 53(3):199-206. PubMed ID: 15995580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NADPH oxidase activity of neutrophil specific granules: requirements for cytosolic components and evidence of assembly during cell activation.
    Ambruso DR; Cusack N; Thurman G
    Mol Genet Metab; 2004 Apr; 81(4):313-21. PubMed ID: 15059619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remarkable stabilization of neutrophil NADPH oxidase using RacQ61L and a p67phox-p47phox fusion protein.
    Miyano K; Fukuda H; Ebisu K; Tamura M
    Biochemistry; 2003 Jan; 42(1):184-90. PubMed ID: 12515553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NADPH dehydrogenase activity of p67PHOX, a cytosolic subunit of the leukocyte NADPH oxidase.
    Dang PM; Babior BM; Smith RM
    Biochemistry; 1999 May; 38(18):5746-53. PubMed ID: 10231525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leu505 of Nox2 is crucial for optimal p67phox-dependent activation of the flavocytochrome b558 during phagocytic NADPH oxidase assembly.
    Li XJ; Fieschi F; Paclet MH; Grunwald D; Campion Y; Gaudin P; Morel F; Stasia MJ
    J Leukoc Biol; 2007 Jan; 81(1):238-49. PubMed ID: 17060362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation.
    Sheppard FR; Kelher MR; Moore EE; McLaughlin NJ; Banerjee A; Silliman CC
    J Leukoc Biol; 2005 Nov; 78(5):1025-42. PubMed ID: 16204621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism for activation of superoxide-producing NADPH oxidases.
    Takeya R; Sumimoto H
    Mol Cells; 2003 Dec; 16(3):271-7. PubMed ID: 14744014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting of Rac1 to the phagocyte membrane is sufficient for the induction of NADPH oxidase assembly.
    Gorzalczany Y; Sigal N; Itan M; Lotan O; Pick E
    J Biol Chem; 2000 Dec; 275(51):40073-81. PubMed ID: 11007780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.