These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 16641225)

  • 1. Content- and task-specific dissociations of frontal activity during maintenance and manipulation in visual working memory.
    Mohr HM; Goebel R; Linden DE
    J Neurosci; 2006 Apr; 26(17):4465-71. PubMed ID: 16641225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural signatures of stimulus features in visual working memory--a spatiotemporal approach.
    Morgan HM; Jackson MC; Klein C; Mohr H; Shapiro KL; Linden DE
    Cereb Cortex; 2010 Jan; 20(1):187-97. PubMed ID: 19429863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frontal and parietal theta burst TMS impairs working memory for visual-spatial conjunctions.
    Morgan HM; Jackson MC; van Koningsbruggen MG; Shapiro KL; Linden DE
    Brain Stimul; 2013 Mar; 6(2):122-9. PubMed ID: 22483548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occipital, parietal, and frontal cortices selectively maintain task-relevant features of multi-feature objects in visual working memory.
    Yu Q; Shim WM
    Neuroimage; 2017 Aug; 157():97-107. PubMed ID: 28559190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of the systems for color and spatial manipulation in working memory revealed by a dual-task procedure.
    Mohr HM; Linden DE
    J Cogn Neurosci; 2005 Feb; 17(2):355-66. PubMed ID: 15811245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective involvement of superior frontal cortex during working memory for shapes.
    Yee LT; Roe K; Courtney SM
    J Neurophysiol; 2010 Jan; 103(1):557-63. PubMed ID: 19923241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of mnemonic and perceptual processes during spatial and nonspatial working memory using fMRI.
    Belger A; Puce A; Krystal JH; Gore JC; Goldman-Rakic P; McCarthy G
    Hum Brain Mapp; 1998; 6(1):14-32. PubMed ID: 9673660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural Coding for Instruction-Based Task Sets in Human Frontoparietal and Visual Cortex.
    Muhle-Karbe PS; Duncan J; De Baene W; Mitchell DJ; Brass M
    Cereb Cortex; 2017 Mar; 27(3):1891-1905. PubMed ID: 26908634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity in human frontal cortex associated with spatial working memory and saccadic behavior.
    Postle BR; Berger JS; Taich AM; D'Esposito M
    J Cogn Neurosci; 2000; 12 Suppl 2():2-14. PubMed ID: 11506643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Neuronal activity of areas of the monkey neocortex during a spatial delayed choice of various visual signals].
    Dudkin KN; Kruchinin VK; Chueva IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1986; 36(5):972-4. PubMed ID: 3799076
    [No Abstract]   [Full Text] [Related]  

  • 11. Neural systems for visual orienting and their relationships to spatial working memory.
    Corbetta M; Kincade JM; Shulman GL
    J Cogn Neurosci; 2002 Apr; 14(3):508-23. PubMed ID: 11970810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed cortical systems in visual short-term memory revealed by event-related functional magnetic resonance imaging.
    Munk MH; Linden DE; Muckli L; Lanfermann H; Zanella FE; Singer W; Goebel R
    Cereb Cortex; 2002 Aug; 12(8):866-76. PubMed ID: 12122035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Load response functions in the human spatial working memory circuit during location memory updating.
    Leung HC; Oh H; Ferri J; Yi Y
    Neuroimage; 2007 Mar; 35(1):368-77. PubMed ID: 17239618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex.
    Walter H; Bretschneider V; Grön G; Zurowski B; Wunderlich AP; Tomczak R; Spitzer M
    Cortex; 2003; 39(4-5):897-911. PubMed ID: 14584558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential neural processes of tactile-visual crossmodal working memory.
    Ohara S; Lenz F; Zhou YD
    Neuroscience; 2006 Apr; 139(1):299-309. PubMed ID: 16324794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How verbal and spatial manipulation networks contribute to calculation: an fMRI study.
    Zago L; Petit L; Turbelin MR; Andersson F; Vigneau M; Tzourio-Mazoyer N
    Neuropsychologia; 2008; 46(9):2403-14. PubMed ID: 18406434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a solution for performance related confounds: frontal, striatal and parietal activation during a continuous spatiotemporal working memory manipulation task.
    Van Hecke J; Gladwin TE; Coremans J; Destoop M; Hulstijn W; Sabbe B
    Brain Imaging Behav; 2013 Mar; 7(1):85-90. PubMed ID: 22847714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topographic maps in human frontal and parietal cortex.
    Silver MA; Kastner S
    Trends Cogn Sci; 2009 Nov; 13(11):488-95. PubMed ID: 19758835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How are colors memorized in working memory? A functional magnetic resonance imaging study.
    Ikeda T; Osaka N
    Neuroreport; 2007 Jan; 18(2):111-4. PubMed ID: 17301673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintaining coherence of dynamic objects requires coordination of neural systems extended from anterior frontal to posterior parietal brain cortices.
    Imaruoka T; Saiki J; Miyauchi S
    Neuroimage; 2005 May; 26(1):277-84. PubMed ID: 15862228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.