BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 16641246)

  • 1. CA150 expression delays striatal cell death in overexpression and knock-in conditions for mutant huntingtin neurotoxicity.
    Arango M; Holbert S; Zala D; Brouillet E; Pearson J; Régulier E; Thakur AK; Aebischer P; Wetzel R; Déglon N; Néri C
    J Neurosci; 2006 Apr; 26(17):4649-59. PubMed ID: 16641246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis.
    Holbert S; Denghien I; Kiechle T; Rosenblatt A; Wellington C; Hayden MR; Margolis RL; Ross CA; Dausset J; Ferrante RJ; Néri C
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1811-6. PubMed ID: 11172033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington's disease.
    Zhang H; Li Q; Graham RK; Slow E; Hayden MR; Bezprozvanny I
    Neurobiol Dis; 2008 Jul; 31(1):80-8. PubMed ID: 18502655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenovirus vector-based in vitro neuronal cell model for Huntington's disease with human disease-like differential aggregation and degeneration.
    Dong X; Zong S; Witting A; Lindenberg KS; Kochanek S; Huang B
    J Gene Med; 2012 Jul; 14(7):468-81. PubMed ID: 22700462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo cell-autonomous transcriptional abnormalities revealed in mice expressing mutant huntingtin in striatal but not cortical neurons.
    Thomas EA; Coppola G; Tang B; Kuhn A; Kim S; Geschwind DH; Brown TB; Luthi-Carter R; Ehrlich ME
    Hum Mol Genet; 2011 Mar; 20(6):1049-60. PubMed ID: 21177255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative relationships between huntingtin levels, polyglutamine length, inclusion body formation, and neuronal death provide novel insight into huntington's disease molecular pathogenesis.
    Miller J; Arrasate M; Shaby BA; Mitra S; Masliah E; Finkbeiner S
    J Neurosci; 2010 Aug; 30(31):10541-50. PubMed ID: 20685997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive and selective striatal degeneration in primary neuronal cultures using lentiviral vector coding for a mutant huntingtin fragment.
    Zala D; Benchoua A; Brouillet E; Perrin V; Gaillard MC; Zurn AD; Aebischer P; Déglon N
    Neurobiol Dis; 2005 Dec; 20(3):785-98. PubMed ID: 16006135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific caspase interactions and amplification are involved in selective neuronal vulnerability in Huntington's disease.
    Hermel E; Gafni J; Propp SS; Leavitt BR; Wellington CL; Young JE; Hackam AS; Logvinova AV; Peel AL; Chen SF; Hook V; Singaraja R; Krajewski S; Goldsmith PC; Ellerby HM; Hayden MR; Bredesen DE; Ellerby LM
    Cell Death Differ; 2004 Apr; 11(4):424-38. PubMed ID: 14713958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential accumulation of N-terminal mutant huntingtin in the nuclei of striatal neurons is regulated by phosphorylation.
    Havel LS; Wang CE; Wade B; Huang B; Li S; Li XJ
    Hum Mol Genet; 2011 Apr; 20(7):1424-37. PubMed ID: 21245084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic background modifies nuclear mutant huntingtin accumulation and HD CAG repeat instability in Huntington's disease knock-in mice.
    Lloret A; Dragileva E; Teed A; Espinola J; Fossale E; Gillis T; Lopez E; Myers RH; MacDonald ME; Wheeler VC
    Hum Mol Genet; 2006 Jun; 15(12):2015-24. PubMed ID: 16687439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omi / HtrA2 is relevant to the selective vulnerability of striatal neurons in Huntington's disease.
    Inagaki R; Tagawa K; Qi ML; Enokido Y; Ito H; Tamura T; Shimizu S; Oyanagi K; Arai N; Kanazawa I; Wanker EE; Okazawa H
    Eur J Neurosci; 2008 Jul; 28(1):30-40. PubMed ID: 18662332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cleavage at the 586 amino acid caspase-6 site in mutant huntingtin influences caspase-6 activation in vivo.
    Graham RK; Deng Y; Carroll J; Vaid K; Cowan C; Pouladi MA; Metzler M; Bissada N; Wang L; Faull RL; Gray M; Yang XW; Raymond LA; Hayden MR
    J Neurosci; 2010 Nov; 30(45):15019-29. PubMed ID: 21068307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchrotron infrared microspectroscopy detecting the evolution of Huntington's disease neuropathology and suggesting unique correlates of dysfunction in white versus gray brain matter.
    Bonda M; Perrin V; Vileno B; Runne H; Kretlow A; Forró L; Luthi-Carter R; Miller LM; Jeney S
    Anal Chem; 2011 Oct; 83(20):7712-20. PubMed ID: 21888376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington's disease: role on chromatin remodeling at the PGC-1-alpha promoter.
    Martin E; Betuing S; Pagès C; Cambon K; Auregan G; Deglon N; Roze E; Caboche J
    Hum Mol Genet; 2011 Jun; 20(12):2422-34. PubMed ID: 21493629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitogen- and stress-activated protein kinase-1 deficiency is involved in expanded-huntingtin-induced transcriptional dysregulation and striatal death.
    Roze E; Betuing S; Deyts C; Marcon E; Brami-Cherrier K; Pagès C; Humbert S; Mérienne K; Caboche J
    FASEB J; 2008 Apr; 22(4):1083-93. PubMed ID: 18029446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutathione redox cycle dysregulation in Huntington's disease knock-in striatal cells.
    Ribeiro M; Rosenstock TR; Cunha-Oliveira T; Ferreira IL; Oliveira CR; Rego AC
    Free Radic Biol Med; 2012 Nov; 53(10):1857-67. PubMed ID: 22982598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease.
    Chaturvedi RK; Hennessey T; Johri A; Tiwari SK; Mishra D; Agarwal S; Kim YS; Beal MF
    Hum Mol Genet; 2012 Aug; 21(15):3474-88. PubMed ID: 22589249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice.
    Li H; Li SH; Yu ZX; Shelbourne P; Li XJ
    J Neurosci; 2001 Nov; 21(21):8473-81. PubMed ID: 11606636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanded huntingtin activates the c-Jun terminal kinase/c-Jun pathway prior to aggregate formation in striatal neurons in culture.
    Garcia M; Charvin D; Caboche J
    Neuroscience; 2004; 127(4):859-70. PubMed ID: 15312898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calcium leak through ryanodine receptor is involved in neuronal death induced by mutant huntingtin.
    Suzuki M; Nagai Y; Wada K; Koike T
    Biochem Biophys Res Commun; 2012 Dec; 429(1-2):18-23. PubMed ID: 23131566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.