These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 16641316)

  • 21. Analgesia with Gabapentin and Pregabalin May Involve
    Taylor CP; Harris EW
    J Pharmacol Exp Ther; 2020 Jul; 374(1):161-174. PubMed ID: 32321743
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The anticonvulsant, antihyperalgesic agent gabapentin is an agonist at brain gamma-aminobutyric acid type B receptors negatively coupled to voltage-dependent calcium channels.
    Bertrand S; Ng GY; Purisai MG; Wolfe SE; Severidt MW; Nouel D; Robitaille R; Low MJ; O'Neill GP; Metters K; Lacaille JC; Chronwall BM; Morris SJ
    J Pharmacol Exp Ther; 2001 Jul; 298(1):15-24. PubMed ID: 11408520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial organization and dynamic properties of neurotransmitter release sites in the enteric nervous system.
    Vanden Berghe P; Klingauf J
    Neuroscience; 2007 Mar; 145(1):88-99. PubMed ID: 17197103
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Presynaptic kainate and NMDA receptors are implicated in the modulation of GABA release from cortical and hippocampal nerve terminals.
    Tarasenko A; Krupko O; Himmelreich N
    Neurochem Int; 2011 Aug; 59(1):81-9. PubMed ID: 21672579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anxiolytic profile of pregabalin on elicited hippocampal theta oscillation.
    Siok CJ; Taylor CP; Hajós M
    Neuropharmacology; 2009 Feb; 56(2):379-85. PubMed ID: 18930748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Presynaptic NMDA autoreceptors facilitate axon excitability: a new molecular target for the anticonvulsant gabapentin.
    Suárez LM; Suárez F; Del Olmo N; Ruiz M; González-Escalada JR; Solís JM
    Eur J Neurosci; 2005 Jan; 21(1):197-209. PubMed ID: 15654857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential modulation of K(+)-evoked (3)H-neurotransmitter release from human neocortex by gabapentin and pregabalin.
    Brawek B; Löffler M; Dooley DJ; Weyerbrock A; Feuerstein TJ
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Jan; 376(5):301-7. PubMed ID: 18074120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pregabalin is a potent and selective ligand for α(2)δ-1 and α(2)δ-2 calcium channel subunits.
    Li Z; Taylor CP; Weber M; Piechan J; Prior F; Bian F; Cui M; Hoffman D; Donevan S
    Eur J Pharmacol; 2011 Sep; 667(1-3):80-90. PubMed ID: 21651903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pregabalin: From molecule to medicine.
    Kavoussi R
    Eur Neuropsychopharmacol; 2006 Jul; 16 Suppl 2():S128-33. PubMed ID: 16765030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteasome inhibition triggers activity-dependent increase in the size of the recycling vesicle pool in cultured hippocampal neurons.
    Willeumier K; Pulst SM; Schweizer FE
    J Neurosci; 2006 Nov; 26(44):11333-41. PubMed ID: 17079661
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Long-term depression of presynaptic release from the readily releasable vesicle pool induced by NMDA receptor-dependent retrograde nitric oxide.
    Stanton PK; Winterer J; Bailey CP; Kyrozis A; Raginov I; Laube G; Veh RW; Nguyen CQ; Müller W
    J Neurosci; 2003 Jul; 23(13):5936-44. PubMed ID: 12843298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phorbol esters target the activity-dependent recycling pool and spare spontaneous vesicle recycling.
    Virmani T; Ertunc M; Sara Y; Mozhayeva M; Kavalali ET
    J Neurosci; 2005 Nov; 25(47):10922-9. PubMed ID: 16306405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative analysis of synaptic vesicle release and readily releasable pool size in hippocampal neurons.
    Xu SJ; Wang P; Xia D
    Sheng Li Xue Bao; 2009 Dec; 61(6):505-10. PubMed ID: 20029682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antinociceptive effect of pregabalin in septic shock-induced rectal hypersensitivity in rats.
    Eutamene H; Coelho AM; Theodorou V; Toulouse M; Chovet M; Doherty A; Fioramonti J; Bueno L
    J Pharmacol Exp Ther; 2000 Oct; 295(1):162-7. PubMed ID: 10991974
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pregabalin: its pharmacology and use in pain management.
    Gajraj NM
    Anesth Analg; 2007 Dec; 105(6):1805-15. PubMed ID: 18042886
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Elucidating the mechanism of action of pregabalin: α(2)δ as a therapeutic target in anxiety.
    Micó JA; Prieto R
    CNS Drugs; 2012 Aug; 26(8):637-48. PubMed ID: 22784017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pregabalin may represent a novel class of anxiolytic agents with a broad spectrum of activity.
    Field MJ; Oles RJ; Singh L
    Br J Pharmacol; 2001 Jan; 132(1):1-4. PubMed ID: 11156553
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anxiolytic-like activity of pregabalin in the Vogel conflict test in α2δ-1 (R217A) and α2δ-2 (R279A) mouse mutants.
    Lotarski SM; Donevan S; El-Kattan A; Osgood S; Poe J; Taylor CP; Offord J
    J Pharmacol Exp Ther; 2011 Aug; 338(2):615-21. PubMed ID: 21558437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pregabalin modulation of neurotransmitter release is mediated by change in intrinsic activation/inactivation properties of ca(v)2.1 calcium channels.
    Di Guilmi MN; Urbano FJ; Inchauspe CG; Uchitel OD
    J Pharmacol Exp Ther; 2011 Mar; 336(3):973-82. PubMed ID: 21177783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterogeneous release properties of visualized individual hippocampal synapses.
    Murthy VN; Sejnowski TJ; Stevens CF
    Neuron; 1997 Apr; 18(4):599-612. PubMed ID: 9136769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.