These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 16641450)
1. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues. Juan C; Moyá B; Pérez JL; Oliver A Antimicrob Agents Chemother; 2006 May; 50(5):1780-7. PubMed ID: 16641450 [TBL] [Abstract][Full Text] [Related]
2. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC beta-lactamase expression. Langaee TY; Gagnon L; Huletsky A Antimicrob Agents Chemother; 2000 Mar; 44(3):583-9. PubMed ID: 10681322 [TBL] [Abstract][Full Text] [Related]
3. Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Schmidtke AJ; Hanson ND Antimicrob Agents Chemother; 2008 Nov; 52(11):3922-7. PubMed ID: 18779353 [TBL] [Abstract][Full Text] [Related]
4. Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa. Moya B; Juan C; Albertí S; Pérez JL; Oliver A Antimicrob Agents Chemother; 2008 Oct; 52(10):3694-700. PubMed ID: 18644952 [TBL] [Abstract][Full Text] [Related]
5. Model system to evaluate the effect of ampD mutations on AmpC-mediated beta-lactam resistance. Schmidtke AJ; Hanson ND Antimicrob Agents Chemother; 2006 Jun; 50(6):2030-7. PubMed ID: 16723562 [TBL] [Abstract][Full Text] [Related]
6. NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa. Zamorano L; Reeve TM; Deng L; Juan C; Moyá B; Cabot G; Vocadlo DJ; Mark BL; Oliver A Antimicrob Agents Chemother; 2010 Sep; 54(9):3557-63. PubMed ID: 20566764 [TBL] [Abstract][Full Text] [Related]
7. Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Bagge N; Ciofu O; Hentzer M; Campbell JI; Givskov M; Høiby N Antimicrob Agents Chemother; 2002 Nov; 46(11):3406-11. PubMed ID: 12384343 [TBL] [Abstract][Full Text] [Related]
8. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa. Asgarali A; Stubbs KA; Oliver A; Vocadlo DJ; Mark BL Antimicrob Agents Chemother; 2009 Jun; 53(6):2274-82. PubMed ID: 19273679 [TBL] [Abstract][Full Text] [Related]
9. Molecular analysis of ampR and ampD to understand variability in inducible expression of "BlaB-like" cephalosporinase in Yersinia enterocolitica biotype 1A. Singhal N; Pandey D; Kumar M; Virdi JS Gene; 2019 Jul; 704():25-30. PubMed ID: 30980942 [TBL] [Abstract][Full Text] [Related]
10. Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway? Pérez-Gallego M; Torrens G; Castillo-Vera J; Moya B; Zamorano L; Cabot G; Hultenby K; Albertí S; Mellroth P; Henriques-Normark B; Normark S; Oliver A; Juan C mBio; 2016 Oct; 7(5):. PubMed ID: 27795406 [TBL] [Abstract][Full Text] [Related]
11. An ampD gene in Pseudomonas aeruginosa encodes a negative regulator of AmpC beta-lactamase expression. Langaee TY; Dargis M; Huletsky A Antimicrob Agents Chemother; 1998 Dec; 42(12):3296-300. PubMed ID: 9835532 [TBL] [Abstract][Full Text] [Related]
12. Signalling proteins in enterobacterial AmpC beta-lactamase regulation. Lindquist S; Galleni M; Lindberg F; Normark S Mol Microbiol; 1989 Aug; 3(8):1091-102. PubMed ID: 2691840 [TBL] [Abstract][Full Text] [Related]
13. Cloning, sequence analyses, expression, and distribution of ampC-ampR from Morganella morganii clinical isolates. Poirel L; Guibert M; Girlich D; Naas T; Nordmann P Antimicrob Agents Chemother; 1999 Apr; 43(4):769-76. PubMed ID: 10103179 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Juan C; Maciá MD; Gutiérrez O; Vidal C; Pérez JL; Oliver A Antimicrob Agents Chemother; 2005 Nov; 49(11):4733-8. PubMed ID: 16251318 [TBL] [Abstract][Full Text] [Related]
15. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients. Moya B; Zamorano L; Juan C; Pérez JL; Ge Y; Oliver A Antimicrob Agents Chemother; 2010 Mar; 54(3):1213-7. PubMed ID: 20086158 [TBL] [Abstract][Full Text] [Related]
16. DNA sequence differences of ampD mutants of Citrobacter freundii. Stapleton P; Shannon K; Phillips I Antimicrob Agents Chemother; 1995 Nov; 39(11):2494-8. PubMed ID: 8585732 [TBL] [Abstract][Full Text] [Related]
17. Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate. Barnaud G; Labia R; Raskine L; Sanson-Le Pors MJ; Philippon A; Arlet G FEMS Microbiol Lett; 2001 Feb; 195(2):185-90. PubMed ID: 11179650 [TBL] [Abstract][Full Text] [Related]
18. ampD homologs in biotypes of Yersinia enterocolitica: Implications in regulation of chromosomal AmpC-type cephalosporinases. Singhal N; Pandey D; Singh NS; Kumar M; Virdi JS Infect Genet Evol; 2019 Apr; 69():211-215. PubMed ID: 30710654 [TBL] [Abstract][Full Text] [Related]
19. NagZ-dependent and NagZ-independent mechanisms for β-lactamase expression in Stenotrophomonas maltophilia. Huang YW; Hu RM; Lin CW; Chung TC; Yang TC Antimicrob Agents Chemother; 2012 Apr; 56(4):1936-41. PubMed ID: 22252801 [TBL] [Abstract][Full Text] [Related]
20. AmpG inactivation restores susceptibility of pan-beta-lactam-resistant Pseudomonas aeruginosa clinical strains. Zamorano L; Reeve TM; Juan C; Moyá B; Cabot G; Vocadlo DJ; Mark BL; Oliver A Antimicrob Agents Chemother; 2011 May; 55(5):1990-6. PubMed ID: 21357303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]