These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 1664183)
1. Absence of dGTP accumulation and compensatory loss of deoxyguanosine kinase in purine nucleoside phosphorylase deficient mice. Jenuth JP; Dilay JE; Fung E; Mably ER; Snyder FF Adv Exp Med Biol; 1991; 309B():273-6. PubMed ID: 1664183 [No Abstract] [Full Text] [Related]
2. Secondary loss of deoxyguanosine kinase activity in purine nucleoside phosphorylase deficient mice. Snyder FF; Jenuth JP; Dilay JE; Fung E; Lightfoot T; Mably ER Biochim Biophys Acta; 1994 Oct; 1227(1-2):33-40. PubMed ID: 7918681 [TBL] [Abstract][Full Text] [Related]
3. A rat model of purine nucleoside phosphorylase deficiency. Osborne WR; Barton RW Immunology; 1986 Sep; 59(1):63-7. PubMed ID: 3019875 [TBL] [Abstract][Full Text] [Related]
4. Point mutations at the purine nucleoside phosphorylase locus impair thymocyte differentiation in the mouse. Snyder FF; Jenuth JP; Mably ER; Mangat RK Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2522-7. PubMed ID: 9122228 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of deoxyguanosine lymphotoxicity. Human thymocytes, but not peripheral blood lymphocytes accumulate deoxy-GTP in conditions simulating purine nucleoside phosphorylase deficiency. Fairbanks LD; Taddeo A; Duley JA; Simmonds HA J Immunol; 1990 Jan; 144(2):485-91. PubMed ID: 2104895 [TBL] [Abstract][Full Text] [Related]
6. Mechanisms of 2'-deoxyguanosine toxicity in mouse T-lymphoma cells with purine nucleoside phosphorylase deficiency and resistance to inhibition of ribonucleotide reductase by dGTP. Duan DS; Nagashima T; Hoshino T; Waldman F; Pawlak K; Sadee W Biochem J; 1990 Jun; 268(3):725-31. PubMed ID: 2114100 [TBL] [Abstract][Full Text] [Related]
7. The metabolism of deoxyguanosine and guanosine in human B and T lymphoblasts. A role for deoxyguanosine kinase activity in the selective T-cell defect associated with purine nucleoside phosphorylase deficiency. Osborne WR; Scott CR Biochem J; 1983 Sep; 214(3):711-8. PubMed ID: 6312962 [TBL] [Abstract][Full Text] [Related]
8. Mitochondrial basis for immune deficiency. Evidence from purine nucleoside phosphorylase-deficient mice. Arpaia E; Benveniste P; Di Cristofano A; Gu Y; Dalal I; Kelly S; Hershfield M; Pandolfi PP; Roifman CM; Cohen A J Exp Med; 2000 Jun; 191(12):2197-208. PubMed ID: 10859343 [TBL] [Abstract][Full Text] [Related]
10. Biochemical and immunological abnormalities in purine nucleoside phosphorylase deficient mice. Arpaia E; Gu Y; Dalal I; Kelly S; Hershfield M; Roifman CM; Cohen A Adv Exp Med Biol; 2000; 486():41-5. PubMed ID: 11783524 [No Abstract] [Full Text] [Related]
11. Purine nucleoside phosphorylase deficient mice exhibit both an age dependent attrition of thymocytes and impaired thymocyte differentiation. Snyder FF; Jenuth JP; Mably ER; Mangat RK; Pinto-Rojas A Adv Exp Med Biol; 1998; 431():515-8. PubMed ID: 9598120 [No Abstract] [Full Text] [Related]
12. Liquid-chromatographic study of purine metabolism abnormalities in purine nucleoside phosphorylase deficiency. Chantin C; Bonin B; Boulieu R; Bory C Clin Chem; 1996 Feb; 42(2):326-8. PubMed ID: 8595732 [TBL] [Abstract][Full Text] [Related]
13. Activation of guanine-β-D-arabinofuranoside and deoxyguanosine to triphosphates by a common pathway blocks T lymphoblasts at different checkpoints. Leanza L; Miazzi C; Ferraro P; Reichard P; Bianchi V Exp Cell Res; 2010 Dec; 316(20):3443-53. PubMed ID: 20603113 [TBL] [Abstract][Full Text] [Related]
15. Isolation and characterization of purine-nucleoside phosphorylase-deficient T-lymphoma cells and secondary mutants with altered ribonucleotide reductase: genetic model for immunodeficiency disease. Ullman B; Gudas LJ; Clift SM; Martin DW Proc Natl Acad Sci U S A; 1979 Mar; 76(3):1074-8. PubMed ID: 108675 [TBL] [Abstract][Full Text] [Related]
16. Modelling of purine nucleoside metabolism during mouse embryonic development: relative routes of adenosine, deoxyadenosine, and deoxyguanosine metabolism. Jenuth JP; Mably ER; Snyder FF Biochem Cell Biol; 1996; 74(2):219-25. PubMed ID: 9213430 [TBL] [Abstract][Full Text] [Related]
17. Rescue of a lethal purine nucleoside phosphorylase mutation in the mouse via a second locus interaction. Snyder FF; Mably ER Adv Exp Med Biol; 1991; 309B():133-6. PubMed ID: 1781356 [No Abstract] [Full Text] [Related]
18. Evidence for distinct catabolic pathways for deoxy-GTP and GTP in purine-nucleoside phosphorylase-deficient mouse T lymphoblasts. Barankiewicz J; Cohen A J Biol Chem; 1985 Apr; 260(8):4565-7. PubMed ID: 2985556 [TBL] [Abstract][Full Text] [Related]
19. Deoxyguanosine triphosphate as a possible toxic metabolite in the immunodeficiency associated with purine nucleoside phosphorylase deficiency. Cohen A; Gudas LJ; Ammann AJ; Staal GE; Martin DW J Clin Invest; 1978 May; 61(5):1405-9. PubMed ID: 96138 [TBL] [Abstract][Full Text] [Related]
20. Biochemistry of diseases of immunodevelopment. Martin DW; Gelfand EW Annu Rev Biochem; 1981; 50():845-77. PubMed ID: 6267992 [No Abstract] [Full Text] [Related] [Next] [New Search]