These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16641890)

  • 21. Reduction of aggregated Tau in neuronal processes but not in the cell bodies after Abeta42 immunisation in Alzheimer's disease.
    Boche D; Donald J; Love S; Harris S; Neal JW; Holmes C; Nicoll JA
    Acta Neuropathol; 2010 Jul; 120(1):13-20. PubMed ID: 20532897
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An aluminum-based rat model for Alzheimer's disease exhibits oxidative damage, inhibition of PP2A activity, hyperphosphorylated tau, and granulovacuolar degeneration.
    Walton JR
    J Inorg Biochem; 2007 Sep; 101(9):1275-84. PubMed ID: 17662457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibitors of free radical formation fail to attenuate direct beta-amyloid25-35 peptide-mediated neurotoxicity in rat hippocampal cultures.
    Lockhart BP; Benicourt C; Junien JL; Privat A
    J Neurosci Res; 1994 Nov; 39(4):494-505. PubMed ID: 7533847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunity and neuronal repair in the progression of Alzheimer's disease: a brief overview.
    Baron R; Harpaz I; Nemirovsky A; Cohen H; Monsonego A
    Exp Gerontol; 2007; 42(1-2):64-9. PubMed ID: 17074458
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced glycation end products in Alzheimer's disease and other neurodegenerative diseases.
    Sasaki N; Fukatsu R; Tsuzuki K; Hayashi Y; Yoshida T; Fujii N; Koike T; Wakayama I; Yanagihara R; Garruto R; Amano N; Makita Z
    Am J Pathol; 1998 Oct; 153(4):1149-55. PubMed ID: 9777946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alzheimer's disease and amyloid: culprit or coincidence?
    Skaper SD
    Int Rev Neurobiol; 2012; 102():277-316. PubMed ID: 22748834
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amyloid-dependent triosephosphate isomerase nitrotyrosination induces glycation and tau fibrillation.
    Guix FX; Ill-Raga G; Bravo R; Nakaya T; de Fabritiis G; Coma M; Miscione GP; Villà-Freixa J; Suzuki T; Fernàndez-Busquets X; Valverde MA; de Strooper B; Muñoz FJ
    Brain; 2009 May; 132(Pt 5):1335-45. PubMed ID: 19251756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regions with abundant neurofibrillary pathology in human brain exhibit a selective reduction in levels of binding-competent tau and accumulation of abnormal tau-isoforms (A68 proteins).
    Bramblett GT; Trojanowski JQ; Lee VM
    Lab Invest; 1992 Feb; 66(2):212-22. PubMed ID: 1735956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alzheimer's disease plaques and tangles: cemeteries of a pyrrhic victory of the immune defence network against herpes simplex infection at the expense of complement and inflammation-mediated neuronal destruction.
    Carter CJ
    Neurochem Int; 2011 Feb; 58(3):301-20. PubMed ID: 21167244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cholesterol homeostasis in neurons and glial cells.
    Vance JE; Hayashi H; Karten B
    Semin Cell Dev Biol; 2005 Apr; 16(2):193-212. PubMed ID: 15797830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new insight on Al-maltolate-treated aged rabbit as Alzheimer's animal model.
    Bharathi ; Shamasundar NM; Sathyanarayana Rao TS; Dhanunjaya Naidu M; Ravid R; Rao KS
    Brain Res Rev; 2006 Sep; 52(2):275-92. PubMed ID: 16782202
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systemic and acquired immune responses in Alzheimer's disease.
    Britschgi M; Wyss-Coray T
    Int Rev Neurobiol; 2007; 82():205-33. PubMed ID: 17678963
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The potential role of proinflammatory and antiinflammatory cytokines in Alzheimer disease pathogenesis.
    Azizi G; Mirshafiey A
    Immunopharmacol Immunotoxicol; 2012 Dec; 34(6):881-95. PubMed ID: 22970774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isoaspartate formation and neurodegeneration in Alzheimer's disease.
    Shimizu T; Watanabe A; Ogawara M; Mori H; Shirasawa T
    Arch Biochem Biophys; 2000 Sep; 381(2):225-34. PubMed ID: 11032409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interleukins, inflammation, and mechanisms of Alzheimer's disease.
    Weisman D; Hakimian E; Ho GJ
    Vitam Horm; 2006; 74():505-30. PubMed ID: 17027528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacological approaches to mitigate neuroinflammation in Alzheimer's disease.
    Uddin MS; Kabir MT; Mamun AA; Barreto GE; Rashid M; Perveen A; Ashraf GM
    Int Immunopharmacol; 2020 Jul; 84():106479. PubMed ID: 32353686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative stress and the pathogenesis of Alzheimer's disease.
    Zhao Y; Zhao B
    Oxid Med Cell Longev; 2013; 2013():316523. PubMed ID: 23983897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inverse relationship between Alzheimer's disease and cancer, and other factors contributing to Alzheimer's disease: a systematic review.
    Shafi O
    BMC Neurol; 2016 Nov; 16(1):236. PubMed ID: 27875990
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Oxidative alterations in Alzheimer's disease.
    Markesbery WR; Carney JM
    Brain Pathol; 1999 Jan; 9(1):133-46. PubMed ID: 9989456
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunological aspects of alzheimer's disease: therapeutic implications.
    Hoozemans JJ; Rozemuller AJ; Veerhuis R; Eikelenboom P
    BioDrugs; 2001; 15(5):325-37. PubMed ID: 11437695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.