These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16642107)

  • 1. Photothermally enabled lithography for refractive-index modulation in SU-8 photoresist.
    Ong BH; Yuan X; Tao S; Tjin SC
    Opt Lett; 2006 May; 31(10):1367-9. PubMed ID: 16642107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjustable refractive index modulation for a waveguide with SU-8 photoresist by dual-UV exposure lithography.
    Ong BH; Yuan X; Tjin SC
    Appl Opt; 2006 Nov; 45(31):8036-9. PubMed ID: 17068544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Simulations for Ultraviolet Lithography Process of Thick SU-8 Photoresist.
    Zhou ZF; Huang QA
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic lithography of periodic two- and three-dimensional microstructures in photoresist SU-8.
    Misawa H; Kondo T; Juodkazis S; Mizeikis V; Matsuo S
    Opt Express; 2006 Aug; 14(17):7943-53. PubMed ID: 19529163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure-dependent refractive index of Nanoscribe IP-Dip photoresist layers.
    Dottermusch S; Busko D; Langenhorst M; Paetzold UW; Richards BS
    Opt Lett; 2019 Jan; 44(1):29-32. PubMed ID: 30645537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 2D Waveguide Method for Lithography Simulation of Thick SU-8 Photoresist.
    Geng ZC; Zhou ZF; Dai H; Huang QA
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33138304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ SU-8 silver nanocomposites.
    Fischer SV; Uthuppu B; Jakobsen MH
    Beilstein J Nanotechnol; 2015; 6():1661-5. PubMed ID: 26425416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro-refractive optical elements fabricated by multi-exposure lithography for laser speckle reduction.
    Tong Z; Niu F; Jian Z; Sun C; Ma Y; Wang M; Jia S; Chen X
    Opt Express; 2020 Nov; 28(23):34597-34605. PubMed ID: 33182924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Mode Tapered Vertical SU-8 Waveguide Fabricated by E-Beam Lithography for Analyte Sensing.
    Xin Y; Pandraud G; Zhang Y; French P
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31374960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoimprinting lithography of a two-layer phase mask for three-dimensional photonic structure holographic fabrications via single exposure.
    Xu D; Chen KP; Ohlinger K; Lin Y
    Nanotechnology; 2011 Jan; 22(3):035303. PubMed ID: 21149952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cost-effective fabrication of microlenses on hybrid sol-gel glass with a high-energy beam-sensitive gray-scale mask.
    Yuan XC; Yu W; Ngo N; Cheong W
    Opt Express; 2002 Apr; 10(7):303-8. PubMed ID: 19436361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invisible Security Printing on Photoresist Polymer Readable by Terahertz Spectroscopy.
    Shin HJ; Lim MC; Park K; Kim SH; Choi SW; Ok G
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29210982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithographic fabrication of large diffractive optical elements on a concave lens surface.
    Xie Y; Lu Z; Li F; Zhao J; Weng Z
    Opt Express; 2002 Oct; 10(20):1043-7. PubMed ID: 19451962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-level diffractive optics for single laser exposure fabrication of telecom-band diamond-like 3-dimensional photonic crystals.
    Chanda D; Abolghasemi LE; Haque M; Ng ML; Herman PR
    Opt Express; 2008 Sep; 16(20):15402-14. PubMed ID: 18825176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulated-responsive refractive-diffractive biological hydrogel micro-optical element enabling achromatism via femtosecond laser lithography.
    Li Q; Shi H; Xi S; Jiang J; Zhang L; Liu Y
    Opt Express; 2023 Aug; 31(18):29368-29379. PubMed ID: 37710738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large refractive index changes of a chemically amplified photoresist in femtosecond laser nonlinear lithography.
    Mizoshiri M; Hirata Y; Nishii J; Nishiyama H
    Opt Express; 2011 Apr; 19(8):7673-9. PubMed ID: 21503076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid fabrication of a micro-ball lens array by extrusion for optical fiber applications.
    Shen SC; Huang JC
    Opt Express; 2009 Jul; 17(15):13122-7. PubMed ID: 19654717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of alignment structures for a fiber resonator by use of deep-ultraviolet lithography.
    Liu X; Brenner KH; Wilzbach M; Schwarz M; Fernholz T; Schmiedmayer J
    Appl Opt; 2005 Nov; 44(32):6857-60. PubMed ID: 16294958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing.
    Yu W; Yuan X; Ngo N; Que W; Cheong W; Koudriachov V
    Opt Express; 2002 May; 10(10):443-8. PubMed ID: 19436379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography.
    Yuan LL; Herman PR
    Nanoscale; 2015 Dec; 7(47):19905-13. PubMed ID: 26568395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.