These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16642163)

  • 1. Terahertz demonstrations of effectively two-dimensional photonic bandgap structures.
    Zhao Y; Grischkowsky D
    Opt Lett; 2006 May; 31(10):1534-6. PubMed ID: 16642163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable THz notch filter with a single groove inside parallel-plate waveguides.
    Lee ES; Jeon TI
    Opt Express; 2012 Dec; 20(28):29605-12. PubMed ID: 23388787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz angle-independent photonic bandgap in a one-dimensional photonic crystal containing InSb-based hyperbolic metamaterials.
    Wu F; Yu X; Panda A; Liu D
    Appl Opt; 2022 Sep; 61(26):7677-7684. PubMed ID: 36256368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and inexpensive fabrication of terahertz electromagnetic bandgap structures.
    Wu Z; Kinast J; Gehm ME; Xin H
    Opt Express; 2008 Oct; 16(21):16442-51. PubMed ID: 18852750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metallic and 3D-printed dielectric helical terahertz waveguides.
    Vogt DW; Anthony J; Leonhardt R
    Opt Express; 2015 Dec; 23(26):33359-69. PubMed ID: 26832000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications.
    Mendis R; Mittleman DM
    Opt Express; 2009 Aug; 17(17):14839-50. PubMed ID: 19687963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nature of subpicosecond terahertz pulse propagation in practical dielectric-filled parallel-plate waveguides.
    Mendis R
    Opt Lett; 2006 Sep; 31(17):2643-5. PubMed ID: 16902646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using microwave and macroscopic samples of dielectric solids to study the photonic properties of disordered photonic bandgap materials.
    Hashemizad SR; Tsitrin S; Yadak P; He Y; Cuneo D; Williamson EP; Liner D; Man W
    J Vis Exp; 2014 Sep; (91):51614. PubMed ID: 25285416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraviolet Laser Lithography of Titania Photonic Crystals for Terahertz-Wave Modulation.
    Kirihara S; Nonaka K; Kisanuki S; Nozaki H; Sakaguchi K
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29783660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parallel-plate waveguides for terahertz-driven MeV electron bunch compression.
    Othman MAK; Hoffmann MC; Kozina ME; Wang XJ; Li RK; Nanni EA
    Opt Express; 2019 Aug; 27(17):23791-23800. PubMed ID: 31510279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Terahertz photonic states in semiconductor-graphene cylinder structures.
    Yuan Y; Yao J; Xu W
    Opt Lett; 2012 Mar; 37(5):960-2. PubMed ID: 22378452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, fabrication and transmitted properties of terahertz paper photonic crystals.
    Zhang W; Lin X; Jin Z; Ma G; Zhong M
    Opt Express; 2013 Nov; 21(23):27622-30. PubMed ID: 24514280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Spectral properties of two-dimensional photonic crystal quantum well structures].
    Wang DD; Wang YS; Xu Z; Deng LE; Zhang CX; Han X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):988-90. PubMed ID: 18720784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial dielectric stepped-refractive-index lens for the terahertz region.
    Hernandez-Serrano AI; Mendis R; Reichel KS; Zhang W; Castro-Camus E; Mittleman DM
    Opt Express; 2018 Feb; 26(3):3702-3708. PubMed ID: 29401897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibiting the TE1-mode diffraction losses in terahertz parallel-plate waveguides using concave plates.
    Mbonye M; Mendis R; Mittleman DM
    Opt Express; 2012 Dec; 20(25):27800-9. PubMed ID: 23262725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz Polarization Isolator Using Two-Dimensional Square Lattice Tellurium Rod Array.
    Wang Y; Ai Y; Gan L; Zhou J; Wang Y; Wang W; Xu B; He W; Li S
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Small-hole waveguides in silicon photonic crystal slabs: efficient use of the complete photonic bandgap.
    Bayer C; Straub M
    Appl Opt; 2009 Sep; 48(27):5050-4. PubMed ID: 19767917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of background dielectric on TE-polarized photonic bandgap of metallodielectric photonic crystals using Dirichlet-to-Neumann map method.
    Sedghi A; Rezaei B
    Appl Opt; 2016 Nov; 55(33):9417-9421. PubMed ID: 27869843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polarization-resolved edge states in terahertz topological photonic crystal.
    Xiong H; Wu Q; Lu Y; Wang R; Zhang Q; Qi J; Yao J; Xu J
    Opt Express; 2019 Aug; 27(16):22819-22826. PubMed ID: 31510567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.