These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16642193)

  • 1. Diffraction theory: application of the fast Fourier factorization to cylindrical devices with arbitrary cross section lighted in conical mounting.
    Boyer P; Popov E; Nevière M; Renversez G
    J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1146-58. PubMed ID: 16642193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section.
    Boyer P; Popov E; Nevière M; Tayeb G
    J Opt Soc Am A Opt Image Sci Vis; 2004 Nov; 21(11):2146-53. PubMed ID: 15536663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mie scattering by an anisotropic object. Part II. Arbitrary-shaped object: differential theory.
    Stout B; Nevière M; Popov E
    J Opt Soc Am A Opt Image Sci Vis; 2006 May; 23(5):1124-34. PubMed ID: 16642190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maxwell equations in Fourier space: fast-converging formulation for diffraction by arbitrary shaped, periodic, anisotropic media.
    Popov E; Nevière M
    J Opt Soc Am A Opt Image Sci Vis; 2001 Nov; 18(11):2886-94. PubMed ID: 11688878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light diffraction by a three-dimensional object: differential theory.
    Stout B; Nevière M; Popov E
    J Opt Soc Am A Opt Image Sci Vis; 2005 Nov; 22(11):2385-404. PubMed ID: 16302390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential theory for anisotropic cylindrical objects with an arbitrary cross section.
    Boyer P
    J Opt Soc Am A Opt Image Sci Vis; 2013 Apr; 30(4):596-603. PubMed ID: 23595318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grating theory: new equations in Fourier space leading to fast converging results for TM polarization.
    Popov E; Nevière M
    J Opt Soc Am A Opt Image Sci Vis; 2000 Oct; 17(10):1773-84. PubMed ID: 11028525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential theory of diffraction by finite cylindrical objects.
    Bonod N; Popov E; Nevière M
    J Opt Soc Am A Opt Image Sci Vis; 2005 Mar; 22(3):481-90. PubMed ID: 15770985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic wave propagation in bars of arbitrary cross section: a generalized Fourier expansion collocation method.
    Lesage JC; Bond JV; Sinclair AN
    J Acoust Soc Am; 2014 Sep; 136(3):985. PubMed ID: 25190374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Convergence analysis of various factorization rules in the Fourier-Bessel basis for solving Maxwell equations using modal methods.
    Dems M
    Opt Express; 2021 Feb; 29(3):4378-4391. PubMed ID: 33771017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended optical theorem for scalar monochromatic acoustical beams of arbitrary wavefront in cylindrical coordinates.
    Mitri FG
    Ultrasonics; 2016 Apr; 67():129-135. PubMed ID: 26836290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solving conical diffraction grating problems with integral equations.
    Goray LI; Schmidt G
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):585-97. PubMed ID: 20208951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier factorization with complex polarization bases in the plane-wave expansion method applied to two-dimensional photonic crystals.
    Antos R; Veis M
    Opt Express; 2010 Dec; 18(26):27511-24. PubMed ID: 21197026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Hankel transform and its application for studying the propagation of cylindrical electromagnetic fields.
    Zhang D; Yuan X; Ngo N; Shum P
    Opt Express; 2002 Jun; 10(12):521-5. PubMed ID: 19436390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential theory of gratings made of anisotropic materials.
    Watanabe K; Petit R; Nevière M
    J Opt Soc Am A Opt Image Sci Vis; 2002 Feb; 19(2):325-34. PubMed ID: 11822595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vibration analysis of coupled conical-cylindrical-spherical shells using a Fourier spectral element method.
    Su Z; Jin G
    J Acoust Soc Am; 2016 Nov; 140(5):3925. PubMed ID: 27908089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boundary integral equation Neumann-to-Dirichlet map method for gratings in conical diffraction.
    Wu Y; Lu YY
    J Opt Soc Am A Opt Image Sci Vis; 2011 Jun; 28(6):1191-6. PubMed ID: 21643404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier factorization with complex polarization bases in modeling optics of discontinuous bi-periodic structures.
    Antos R
    Opt Express; 2009 Apr; 17(9):7269-74. PubMed ID: 19399103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective medium approximation of anisotropic lamellar nanogratings based on Fourier factorization.
    Foldyna M; Ossikovski R; De Martino A; Drevillon B; Postava K; Ciprian D; Pistora J; Watanabe K
    Opt Express; 2006 Apr; 14(8):3114-28. PubMed ID: 19516453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytic description of cylindrical electromagnetic wave propagation in an inhomogeneous nonlinear and nondispersive medium.
    Xiong H; Si LG; Huang P; Yang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):057602. PubMed ID: 21230630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.