These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16642364)

  • 1. Local and systemic effects on blood lactate concentration during exercise with small and large muscle groups.
    Chudalla R; Baerwalde S; Schneider G; Maassen N
    Pflugers Arch; 2006 Sep; 452(6):690-7. PubMed ID: 16642364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maximal accumulated oxygen deficit expressed relative to the active muscle mass for cycling in untrained male and female subjects.
    Weber CL; Schneider DA
    Eur J Appl Physiol; 2000 Jul; 82(4):255-61. PubMed ID: 10958366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inspiratory muscle training abolishes the blood lactate increase associated with volitional hyperpnoea superimposed on exercise and accelerates lactate and oxygen uptake kinetics at the onset of exercise.
    Brown PI; Sharpe GR; Johnson MA
    Eur J Appl Physiol; 2012 Jun; 112(6):2117-29. PubMed ID: 21964908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximal voluntary hyperpnoea increases blood lactate concentration during exercise.
    Johnson MA; Sharpe GR; McConnell AK
    Eur J Appl Physiol; 2006 Mar; 96(5):600-8. PubMed ID: 16450166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Exercise recommendation and catecholamines in patients with coronary artery disease].
    Tegtbur U; Meyer H; Machold H; Busse MW
    Z Kardiol; 2002 Nov; 91(11):927-36. PubMed ID: 12442196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sprint training enhances ionic regulation during intense exercise in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):687-702. PubMed ID: 9218228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The re-establishment of the normal blood lactate response to exercise in humans after prolonged acclimatization to altitude.
    van Hall G; Calbet JA; Søndergaard H; Saltin B
    J Physiol; 2001 Nov; 536(Pt 3):963-75. PubMed ID: 11691888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J; Juel C; Hellsten Y; Saltin B
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Determining the extent of intensive physical performance in patients with coronary heart disease].
    Tegtbur U; Machold H; Meyer H; Storp D; Busse MW
    Z Kardiol; 2001 Sep; 90(9):637-45. PubMed ID: 11677800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate kinetics in resting and exercising forearms during moderate-intensity supine leg exercise.
    Catcheside PG; Scroop GC
    J Appl Physiol (1985); 1993 Jan; 74(1):435-43. PubMed ID: 8444725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma lactate concentration and muscle blood flow during dynamic exercise with negative-pressure breathing.
    Kamijo Y; Takeno Y; Sakai A; Inaki M; Okumoto T; Itoh J; Yanagidaira Y; Masuki S; Nose H
    J Appl Physiol (1985); 2000 Dec; 89(6):2196-205. PubMed ID: 11090568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loading of trained inspiratory muscles speeds lactate recovery kinetics.
    Brown PI; Sharpe GR; Johnson MA
    Med Sci Sports Exerc; 2010 Jun; 42(6):1103-12. PubMed ID: 19997028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eccentric exercise-induced muscle damage dissociates the lactate and gas exchange thresholds.
    Davies RC; Rowlands AV; Poole DC; Jones AM; Eston RG
    J Sports Sci; 2011 Jan; 29(2):181-9. PubMed ID: 21170804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and perceived exertion responses at intermittent critical power and intermittent maximal lactate steady state.
    Okuno NM; Perandini LA; Bishop D; Simões HG; Pereira G; Berthoin S; Kokubun E; Nakamura FY
    J Strength Cond Res; 2011 Jul; 25(7):2053-8. PubMed ID: 21606860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inspired O2 concentration on leg lactate release during incremental exercise.
    Knight DR; Poole DC; Hogan MC; Bebout DE; Wagner PD
    J Appl Physiol (1985); 1996 Jul; 81(1):246-51. PubMed ID: 8828671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VO2/power output relationship and the slow component of oxygen uptake kinetics during cycling at different pedaling rates: relationship to venous lactate accumulation and blood acid-base balance.
    Zoladz JA; Duda K; Majerczak J
    Physiol Res; 1998; 47(6):427-38. PubMed ID: 10453750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasma catecholamine and blood lactate responses to incremental arm and leg exercise.
    Schneider DA; McLellan TM; Gass GC
    Med Sci Sports Exerc; 2000 Mar; 32(3):608-13. PubMed ID: 10731002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; Obminski G; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):703-16. PubMed ID: 9218229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catecholamine and blood lactate responses to incremental rowing and running exercise.
    Weltman A; Wood CM; Womack CJ; Davis SE; Blumer JL; Alvarez J; Sauer K; Gaesser GA
    J Appl Physiol (1985); 1994 Mar; 76(3):1144-9. PubMed ID: 8005857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate uptake by forearm skeletal muscles during repeated periods of short-term intense leg exercise in humans.
    Granier P; Dubouchaud H; Mercier B; Mercier J; Ahmaidi S; Préfaut C
    Eur J Appl Physiol Occup Physiol; 1996; 72(3):209-14. PubMed ID: 8820887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.