BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 16642518)

  • 1. Modulation of infectivity in phage display as a tool to determine the substrate specificity of proteases.
    Chaparro-Riggers JF; Breves R; Maurer KH; Bornscheuer U
    Chembiochem; 2006 Jun; 7(6):965-70. PubMed ID: 16642518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Display of active subtilisin 309 on phage: analysis of parameters influencing the selection of subtilisin variants with changed substrate specificity from libraries using phosphonylating inhibitors.
    Legendre D; Laraki N; Gräslund T; Bjørnvad ME; Bouchet M; Nygren PA; Borchert TV; Fastrez J
    J Mol Biol; 2000 Feb; 296(1):87-102. PubMed ID: 10656819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phage display substrate: a blind method for determining protease specificity.
    Deperthes D
    Biol Chem; 2002; 383(7-8):1107-12. PubMed ID: 12437093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a novel peptide substrate of HSV-1 protease using substrate phage display.
    O'Boyle DR; Pokornowski KA; McCann PJ; Weinheimer SP
    Virology; 1997 Sep; 236(2):338-47. PubMed ID: 9325241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificity of the Escherichia coli outer membrane protease OmpT.
    McCarter JD; Stephens D; Shoemaker K; Rosenberg S; Kirsch JF; Georgiou G
    J Bacteriol; 2004 Sep; 186(17):5919-25. PubMed ID: 15317797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phage display as a powerful tool to engineer protease inhibitors.
    Zani ML; Moreau T
    Biochimie; 2010 Nov; 92(11):1689-704. PubMed ID: 20470858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protease substrate site predictors derived from machine learning on multilevel substrate phage display data.
    Chen CT; Yang EW; Hsu HJ; Sun YK; Hsu WL; Yang AS
    Bioinformatics; 2008 Dec; 24(23):2691-7. PubMed ID: 18974075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for mapping protease specificity.
    Diamond SL
    Curr Opin Chem Biol; 2007 Feb; 11(1):46-51. PubMed ID: 17157549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening for protease substrate by polyvalent phage display.
    Sedlacek R; Chen E
    Comb Chem High Throughput Screen; 2005 Mar; 8(2):197-203. PubMed ID: 15777183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping protease substrates by using a biotinylated phage substrate library.
    Scholle MD; Kriplani U; Pabon A; Sishtla K; Glucksman MJ; Kay BK
    Chembiochem; 2006 May; 7(5):834-8. PubMed ID: 16628754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Characterization of a New pVII Combinatorial Phage Display Peptide Library for Protease Substrate Mining Using Factor VII Activating Protease (FSAP) as Model.
    Kara E; Nielsen NV; Eggertsdottir B; Thiede B; Kanse SM; Løset GÅ
    Chembiochem; 2020 Jul; 21(13):1875-1884. PubMed ID: 32180321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Expression optimization of Bacillus pumilus subtilisin-like proteinase].
    Cheremin AM; Niamsuren Ch; Toĭmentseva AA; Sharipova MR
    Bioorg Khim; 2014; 40(6):752-7. PubMed ID: 25895372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cleavage specificity of the serine protease of Aeromonas sobria, a member of the kexin family of subtilases.
    Kobayashi H; Takahashi E; Oguma K; Fujii Y; Yamanaka H; Negishi T; Arimoto-Kobayashi S; Tsuji T; Okamoto K
    FEMS Microbiol Lett; 2006 Mar; 256(1):165-70. PubMed ID: 16487335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. mRNA-display-based selections for proteins with desired functions: a protease-substrate case study.
    Valencia CA; Cotten SW; Dong B; Liu R
    Biotechnol Prog; 2008; 24(3):561-9. PubMed ID: 18471027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptide sequences identified by phage display are immunodominant functional motifs of Pet and Pic serine proteases secreted by Escherichia coli and Shigella flexneri.
    Ulises HC; Tatiana G; Karlen G; Guillermo MH; Juan XC; Carlos E
    Peptides; 2009 Dec; 30(12):2127-35. PubMed ID: 19772881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteases universally recognize beta strands in their active sites.
    Tyndall JD; Nall T; Fairlie DP
    Chem Rev; 2005 Mar; 105(3):973-99. PubMed ID: 15755082
    [No Abstract]   [Full Text] [Related]  

  • 17. Japanese encephalitis virus NS2B-NS3 protease binding to phage-displayed human brain proteins with the domain of trypsin inhibitor and basic region leucine zipper.
    Lin CW; Lin KH; Lyu PC; Chen WJ
    Virus Res; 2006 Mar; 116(1-2):106-13. PubMed ID: 16289409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances and concepts in substrate specificity determination of proteases using tailored libraries of fluorogenic substrates with unnatural amino acids.
    Rut W; Kasperkiewicz P; Byzia A; Poreba M; Groborz K; Drag M
    Biol Chem; 2015 Apr; 396(4):329-37. PubMed ID: 25719315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolating substrates for an engineered alpha-lytic protease by phage display.
    Lien S; Francis GL; Graham LD; Wallace JC
    J Protein Chem; 2003 Feb; 22(2):155-66. PubMed ID: 12760420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activity based fingerprinting of proteases using FRET peptides.
    Sun H; Panicker RC; Yao SQ
    Biopolymers; 2007; 88(2):141-9. PubMed ID: 17206627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.