BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 1664258)

  • 1. N-Chlorination and oxidation of procainamide by myeloperoxidase: toxicological implications.
    Uetrecht JP; Zahid N
    Chem Res Toxicol; 1991; 4(2):218-22. PubMed ID: 1664258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-chlorination of sulfamethoxazole and dapsone by the myeloperoxidase system.
    Uetrecht JP; Shear NH; Zahid N
    Drug Metab Dispos; 1993; 21(5):830-4. PubMed ID: 7902244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbamazepine metabolism to a reactive intermediate by the myeloperoxidase system of activated neutrophils.
    Furst SM; Uetrecht JP
    Biochem Pharmacol; 1993 Mar; 45(6):1267-75. PubMed ID: 8385460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative metabolism and covalent binding of procainamide by human leukocytes.
    Uetrecht J; Sokoluk B
    Drug Metab Dispos; 1992; 20(1):120-3. PubMed ID: 1346986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of procainamide to the cytotoxic hydroxylamine by neutrophils activated in vitro.
    Rubin RL; Curnutte JT
    J Clin Invest; 1989 Apr; 83(4):1336-43. PubMed ID: 2539397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-chlorination of phenytoin by myeloperoxidase to a reactive metabolite.
    Uetrecht J; Zahid N
    Chem Res Toxicol; 1988; 1(3):148-51. PubMed ID: 2856515
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of vesnarinone by activated neutrophils: implications for vesnarinone-induced agranulocytosis.
    Uetrecht JP; Zahid N; Whitfield D
    J Pharmacol Exp Ther; 1994 Sep; 270(3):865-72. PubMed ID: 7932198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Procainamide, but not N-acetylprocainamide, induces protein free radical formation on myeloperoxidase: a potential mechanism of agranulocytosis.
    Siraki AG; Deterding LJ; Bonini MG; Jiang J; Ehrenshaft M; Tomer KB; Mason RP
    Chem Res Toxicol; 2008 May; 21(5):1143-53. PubMed ID: 18489081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison of the covalent binding of clozapine, procainamide, and vesnarinone to human neutrophils in vitro and rat tissues in vitro and in vivo.
    Gardner I; Popović M; Zahid N; Uetrecht JP
    Chem Res Toxicol; 2005 Sep; 18(9):1384-94. PubMed ID: 16167830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity and possible significance of hydroxylamine and nitroso metabolites of procainamide.
    Uetrecht JP
    J Pharmacol Exp Ther; 1985 Feb; 232(2):420-5. PubMed ID: 3968643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolism of procainamide to a hydroxylamine by human neutrophils and mononuclear leukocytes.
    Uetrecht J; Zahid N; Rubin R
    Chem Res Toxicol; 1988; 1(1):74-8. PubMed ID: 2979715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation of a metabolite of indomethacin (Desmethyldeschlorobenzoylindomethacin) to reactive intermediates by activated neutrophils, hypochlorous acid, and the myeloperoxidase system.
    Ju C; Uetrecht JP
    Drug Metab Dispos; 1998 Jul; 26(7):676-80. PubMed ID: 9660850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutrophil- and myeloperoxidase-mediated metabolism of reduced nimesulide: evidence for bioactivation.
    Yang M; Chordia MD; Li F; Huang T; Linden J; Macdonald TL
    Chem Res Toxicol; 2010 Nov; 23(11):1691-700. PubMed ID: 20939553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutrophil Myeloperoxidase-Mediated N-Demethylation of Quetiapine Leads to
    Rashid MH; Babu D; Tran N; Reiz B; Siraki AG
    Chem Res Toxicol; 2022 Jun; 35(6):1001-1010. PubMed ID: 35575633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation.
    Anderson MM; Hazen SL; Hsu FF; Heinecke JW
    J Clin Invest; 1997 Feb; 99(3):424-32. PubMed ID: 9022075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of ticlopidine by activated neutrophils: implications for ticlopidine-induced agranulocytosis.
    Liu ZC; Uetrecht JP
    Drug Metab Dispos; 2000 Jul; 28(7):726-30. PubMed ID: 10859143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms by which clofazimine and dapsone inhibit the myeloperoxidase system. A possible correlation with their anti-inflammatory properties.
    van Zyl JM; Basson K; Kriegler A; van der Walt BJ
    Biochem Pharmacol; 1991 Jul; 42(3):599-608. PubMed ID: 1650217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical determination of N-oxidized procainamide metabolites and functional assessment of effects on murine cells in vitro.
    Wheeler JF; Lunte CE; Heineman WR; Adams L; Hess EV
    Proc Soc Exp Biol Med; 1988 Jul; 188(3):381-6. PubMed ID: 2455906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells.
    Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thiocyanate catalyzes myeloperoxidase-initiated lipid oxidation in LDL.
    Exner M; Hermann M; Hofbauer R; Hartmann B; Kapiotis S; Gmeiner B
    Free Radic Biol Med; 2004 Jul; 37(2):146-55. PubMed ID: 15203186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.