BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 16642789)

  • 1. Hypergravity susceptibility of ventral root activity during fictive swimming in tadpoles (Xenopus laevis).
    Böser S; Horn ER
    Arch Ital Biol; 2006 May; 144(2):99-113. PubMed ID: 16642789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered gravity affects ventral root activity during fictive swimming and the static vestibuloocular reflex in young tadpoles (Xenopus laevis).
    Böser S; Dournon C; Gualandris-Parisot L; Horn E
    Arch Ital Biol; 2008 Mar; 146(1):1-20. PubMed ID: 18666444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The contribution of the NMDA receptor glycine site to rhythm generation during fictive swimming in Xenopus laevis tadpoles.
    Issberner JP; Sillar KT
    Eur J Neurosci; 2007 Nov; 26(9):2556-64. PubMed ID: 17970719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of swimming rhythmicity in post-embryonic Xenopus laevis.
    Sillar KT; Wedderburn JF; Simmers AJ
    Proc Biol Sci; 1991 Nov; 246(1316):147-53. PubMed ID: 1685239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypergravity exposure affects ventral root activity in tadpoles (Xenopus laevis).
    Boser S; Horn E
    J Gravit Physiol; 2002 Jul; 9(1):P209-10. PubMed ID: 15002551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling.
    Yoshida M; Roberts A; Soffe SR
    J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles.
    Green CS; Soffe SR
    J Neurophysiol; 1998 May; 79(5):2316-28. PubMed ID: 9582207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adrenoreceptor-mediated modulation of the spinal locomotor pattern during swimming in Xenopus laevis tadpoles.
    Fischer H; Merrywest SD; Sillar KT
    Eur J Neurosci; 2001 Mar; 13(5):977-86. PubMed ID: 11264670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical coupling synchronises spinal motoneuron activity during swimming in hatchling Xenopus tadpoles.
    Zhang HY; Li WC; Heitler WJ; Sillar KT
    J Physiol; 2009 Sep; 587(Pt 18):4455-66. PubMed ID: 19635820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Swimming kinematics and respiratory behaviour of Xenopus laevis larvae raised in altered gravity.
    Fejtek M; Souza K; Neff A; Wassersug R
    J Exp Biol; 1998 Jun; 201(Pt 12):1917-26. PubMed ID: 9722430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal gradients in the spinal cord of Xenopus embryos and their possible role in coordination of swimming.
    Roberts A; Tunstall MJ
    Eur J Morphol; 1994 Aug; 32(2-4):176-84. PubMed ID: 7803164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of swimming rhythmicity by 5-hydroxytryptamine during post-embryonic development in Xenopus laevis.
    Sillar KT; Wedderburn JF; Simmers AJ
    Proc Biol Sci; 1992 Nov; 250(1328):107-14. PubMed ID: 1361984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An age-dependent sensitivity of the roll-induced vestibuloocular reflex to hypergravity exposure of several days in an amphibian (Xenopus laevis).
    Sebastian CE; Pfau K; Horn ER
    Acta Astronaut; 1998; 42(1-8):419-30. PubMed ID: 11541625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Group I mGluRs increase locomotor network excitability in Xenopus tadpoles via presynaptic inhibition of glycinergic neurotransmission.
    Chapman RJ; Issberner JP; Sillar KT
    Eur J Neurosci; 2008 Sep; 28(5):903-13. PubMed ID: 18691329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of high gravity on amphibian development.
    Kashiwagi A; Hanada H; Kawakami S; Kubo H; Shinkai T; Fujii H; Kashiwagi K
    Biol Sci Space; 2003 Oct; 17(3):215-6. PubMed ID: 14676383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myogenesis in the trunk and leg during development of the tadpole of Xenopus laevis (Daudin 1802).
    Muntz L
    J Embryol Exp Morphol; 1975 Jun; 33(3):757-74. PubMed ID: 1176869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Descending projections and excitation during fictive swimming in Xenopus embryos: neuroanatomy and lesion experiments.
    Roberts A; Alford ST
    J Comp Neurol; 1986 Aug; 250(2):253-61. PubMed ID: 3745515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Critical periods" in vestibular development or adaptation of gravity sensory systems to altered gravitational conditions?
    Horn ER
    Arch Ital Biol; 2004 May; 142(3):155-74. PubMed ID: 15260375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of a spinal locomotor network by metabotropic glutamate receptors.
    Chapman RJ; Sillar KT
    Eur J Neurosci; 2007 Oct; 26(8):2257-68. PubMed ID: 17894819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.