These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 16642818)
1. Mode-matching without root-finding: application to a dissipative silencer. Lawrie JB; Kirby R J Acoust Soc Am; 2006 Apr; 119(4):2050-61. PubMed ID: 16642818 [TBL] [Abstract][Full Text] [Related]
2. On acoustic propagation in three-dimensional rectangular ducts with flexible walls and porous linings. Lawrie JB J Acoust Soc Am; 2012 Mar; 131(3):1890-901. PubMed ID: 22423686 [TBL] [Abstract][Full Text] [Related]
3. A three dimensional investigation into the acoustic performance of dissipative splitter silencers. Kirby R; Williams PT; Hill J J Acoust Soc Am; 2014 May; 135(5):2727-37. PubMed ID: 24815256 [TBL] [Abstract][Full Text] [Related]
4. Modeling sound propagation in acoustic waveguides using a hybrid numerical method. Kirby R J Acoust Soc Am; 2008 Oct; 124(4):1930-40. PubMed ID: 19062832 [TBL] [Abstract][Full Text] [Related]
5. Root finding in the complex plane for seismo-acoustic propagation scenarios with Green's function solutions. McCollom BA; Collis JM J Acoust Soc Am; 2014 Sep; 136(3):1036. PubMed ID: 25190379 [TBL] [Abstract][Full Text] [Related]
6. Coupled-mode sound propagation in a range-dependent, moving fluid. Godin OA J Acoust Soc Am; 2002 May; 111(5 Pt 1):1984-95. PubMed ID: 12051418 [TBL] [Abstract][Full Text] [Related]
7. A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow. Nennig B; Perrey-Debain E; Ben Tahar M J Acoust Soc Am; 2010 Dec; 128(6):3308-20. PubMed ID: 21218865 [TBL] [Abstract][Full Text] [Related]
8. Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe. Kirby R; Denia FD J Acoust Soc Am; 2007 Dec; 122(6):3471-82. PubMed ID: 18247756 [TBL] [Abstract][Full Text] [Related]
9. Atmospheric sound propagation in a stratified moving media: Application of the semi analytic finite element method. Kirby R J Acoust Soc Am; 2020 Dec; 148(6):3737. PubMed ID: 33379921 [TBL] [Abstract][Full Text] [Related]
10. Acoustic mode radiation from the termination of a truncated nonlinear internal gravity wave duct in a shallow ocean area. Lin YT; Duda TF; Lynch JF J Acoust Soc Am; 2009 Oct; 126(4):1752-65. PubMed ID: 19813790 [TBL] [Abstract][Full Text] [Related]
11. Observationally constrained modeling of sound in curved ocean internal waves: examination of deep ducting and surface ducting at short range. Duda TF; Lin YT; Reeder DB J Acoust Soc Am; 2011 Sep; 130(3):1173-87. PubMed ID: 21895060 [TBL] [Abstract][Full Text] [Related]
12. Horizontal ducting of sound by curved nonlinear internal gravity waves in the continental shelf areas. Lin YT; McMahon KG; Lynch JF; Siegmann WL J Acoust Soc Am; 2013 Jan; 133(1):37-49. PubMed ID: 23297881 [TBL] [Abstract][Full Text] [Related]
14. Parameter dependence of acoustic mode quantities in an idealized model for shallow-water nonlinear internal wave ducts. Milone MA; DeCourcy BJ; Lin YT; Siegmann WL J Acoust Soc Am; 2019 Sep; 146(3):1934. PubMed ID: 31590537 [TBL] [Abstract][Full Text] [Related]
15. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm. Saffar S; Abdullah A Ultrasonics; 2012 Jan; 52(1):169-85. PubMed ID: 21893329 [TBL] [Abstract][Full Text] [Related]
16. Propagation of nonlinear acoustic plane waves in an elastic gas-filled tube. Bednarik M; Cervenka M J Acoust Soc Am; 2009 Oct; 126(4):1681-9. PubMed ID: 19813784 [TBL] [Abstract][Full Text] [Related]
18. A wave-based finite element analysis for acoustic transmission in fluid-filled elastic waveguides. Peplow AT J Acoust Soc Am; 2009 Apr; 125(4):2053-63. PubMed ID: 19354381 [TBL] [Abstract][Full Text] [Related]
19. Study of acoustic and aerodynamic performance of reactive silencer with different configurations: Theoretical, modeling and experimental. Rahimi Jokandan M; Safari Variani A; Ahmadi S Heliyon; 2023 Sep; 9(9):e20058. PubMed ID: 37809445 [TBL] [Abstract][Full Text] [Related]
20. A frequency domain linearized Navier-Stokes equations approach to acoustic propagation in flow ducts with sharp edges. Kierkegaard A; Boij S; Efraimsson G J Acoust Soc Am; 2010 Feb; 127(2):710-9. PubMed ID: 20136193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]