These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 16642854)

  • 1. Effects of introducing unprocessed low-frequency information on the reception of envelope-vocoder processed speech.
    Qin MK; Oxenham AJ
    J Acoust Soc Am; 2006 Apr; 119(4):2417-26. PubMed ID: 16642854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of simulated cochlear-implant processing on speech reception in fluctuating maskers.
    Qin MK; Oxenham AJ
    J Acoust Soc Am; 2003 Jul; 114(1):446-54. PubMed ID: 12880055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of age on F0 discrimination and intonation perception in simulated electric and electroacoustic hearing.
    Souza P; Arehart K; Miller CW; Muralimanohar RK
    Ear Hear; 2011 Feb; 32(1):75-83. PubMed ID: 20739892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of consonant landmarks to speech recognition in simulated acoustic-electric hearing.
    Chen F; Loizou PC
    Ear Hear; 2010 Apr; 31(2):259-67. PubMed ID: 20081538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Release From Masking in Simulated Cochlear Implant Users With and Without Access to Low-Frequency Acoustic Hearing.
    Williges B; Dietz M; Hohmann V; Jürgens T
    Trends Hear; 2015 Dec; 19():. PubMed ID: 26721918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Frequency Following Responses to Vocoded Speech.
    Ananthakrishnan S; Luo X; Krishnan A
    Ear Hear; 2017; 38(5):e256-e267. PubMed ID: 28362674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving electric-acoustic benefit with a modulated tone.
    Brown CA; Bacon SP
    Ear Hear; 2009 Oct; 30(5):489-93. PubMed ID: 19546806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cochlear implant speech recognition with speech maskers.
    Stickney GS; Zeng FG; Litovsky R; Assmann P
    J Acoust Soc Am; 2004 Aug; 116(2):1081-91. PubMed ID: 15376674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of first formant information in simulated electro-acoustic hearing.
    Verschuur C; Boland C; Frost E; Constable J
    J Acoust Soc Am; 2013 Jun; 133(6):4279-89. PubMed ID: 23742378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of temporally interrupted and spectrally degraded sentences with additional unprocessed low-frequency speech.
    Başkent D; Chatterjee M
    Hear Res; 2010 Dec; 270(1-2):127-33. PubMed ID: 20817081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the intelligibility of vocoded speech.
    Chen F; Loizou PC
    Ear Hear; 2011; 32(3):331-8. PubMed ID: 21206363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of envelope periodicity to release from speech-on-speech masking.
    Christiansen C; MacDonald EN; Dau T
    J Acoust Soc Am; 2013 Sep; 134(3):2197-204. PubMed ID: 23967949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transfer of auditory perceptual learning with spectrally reduced speech to speech and nonspeech tasks: implications for cochlear implants.
    Loebach JL; Pisoni DB; Svirsky MA
    Ear Hear; 2009 Dec; 30(6):662-74. PubMed ID: 19773659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does acoustic fundamental frequency information enhance cochlear implant performance?
    Mulhern L; Cullington H
    Cochlear Implants Int; 2014 Mar; 15(2):101-8. PubMed ID: 24597637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding speech in modulated interference: cochlear implant users and normal-hearing listeners.
    Nelson PB; Jin SH; Carney AE; Nelson DA
    J Acoust Soc Am; 2003 Feb; 113(2):961-8. PubMed ID: 12597189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speech recognition under conditions of frequency-place compression and expansion.
    Baskent D; Shannon RV
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2064-76. PubMed ID: 12703717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech Understanding With Various Maskers in Cochlear-Implant and Simulated Cochlear-Implant Hearing: Effects of Spectral Resolution and Implications for Masking Release.
    Croghan NBH; Smith ZM
    Trends Hear; 2018; 22():2331216518787276. PubMed ID: 30022730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of age and hearing loss on the relationship between discrimination of stochastic frequency modulation and speech perception.
    Sheft S; Shafiro V; Lorenzi C; McMullen R; Farrell C
    Ear Hear; 2012; 33(6):709-20. PubMed ID: 22790319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.