These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16642862)

  • 1. Bayesian analysis of polyphonic western tonal music.
    Davy M; Godsill S; Idier J
    J Acoust Soc Am; 2006 Apr; 119(4):2498-517. PubMed ID: 16642862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse and structured decomposition of audio signals on hybrid dictionaries using musical priors.
    Papadopoulos H; Kowalski M
    J Acoust Soc Am; 2013 Jul; 134(1):666-85. PubMed ID: 23862840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poisson point process modeling for polyphonic music transcription.
    Peeling P; Li CF; Godsill S
    J Acoust Soc Am; 2007 Apr; 121(4):EL168-75. PubMed ID: 17471763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of posterior parietal and dorsal premotor cortices in relative pitch processing: Comparing musical intervals to lexical tones.
    Tsai CG; Chou TL; Li CW
    Neuropsychologia; 2018 Oct; 119():118-127. PubMed ID: 30056054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple-instrument polyphonic music transcription using a temporally constrained shift-invariant model.
    Benetos E; Dixon S
    J Acoust Soc Am; 2013 Mar; 133(3):1727-41. PubMed ID: 23464042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decoding the dynamic representation of musical pitch from human brain activity.
    Sankaran N; Thompson WF; Carlile S; Carlson TA
    Sci Rep; 2018 Jan; 8(1):839. PubMed ID: 29339790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined model of sensory and cognitive representations underlying tonal expectations in music: from audio signals to behavior.
    Collins T; Tillmann B; Barrett FS; Delbé C; Janata P
    Psychol Rev; 2014 Jan; 121(1):33-65. PubMed ID: 24490788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What Constitutes a Phrase in Sound-Based Music? A Mixed-Methods Investigation of Perception and Acoustics.
    Olsen KN; Dean RT; Leung Y
    PLoS One; 2016; 11(12):e0167643. PubMed ID: 27997625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Musical note onset detection based on a spectral sparsity measure.
    Mounir M; Karsmakers P; van Waterschoot T
    EURASIP J Audio Speech Music Process; 2021; 2021(1):30. PubMed ID: 34721557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unsupervised analysis of polyphonic music by sparse coding.
    Abdallah SA; Plumbley MD
    IEEE Trans Neural Netw; 2006 Jan; 17(1):179-96. PubMed ID: 16526486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural discrimination of nonprototypical chords in music experts and laymen: an MEG study.
    Brattico E; Pallesen KJ; Varyagina O; Bailey C; Anourova I; Järvenpää M; Eerola T; Tervaniemi M
    J Cogn Neurosci; 2009 Nov; 21(11):2230-44. PubMed ID: 18855547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sawtooth waveform inspired pitch estimator for speech and music.
    Camacho A; Harris JG
    J Acoust Soc Am; 2008 Sep; 124(3):1638-52. PubMed ID: 19045655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
    Vuust P; Brattico E; Seppänen M; Näätänen R; Tervaniemi M
    Neuropsychologia; 2012 Jun; 50(7):1432-43. PubMed ID: 22414595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training of cochlear implant users to improve pitch perception in the presence of competing place cues.
    Vandali A; Sly D; Cowan R; van Hoesel R
    Ear Hear; 2015; 36(2):e1-e13. PubMed ID: 25329372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain networks that track musical structure.
    Janata P
    Ann N Y Acad Sci; 2005 Dec; 1060():111-24. PubMed ID: 16597758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Timbre Toolbox: extracting audio descriptors from musical signals.
    Peeters G; Giordano BL; Susini P; Misdariis N; McAdams S
    J Acoust Soc Am; 2011 Nov; 130(5):2902-16. PubMed ID: 22087919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Categorisation of polyphonic musical signals by using modularity community detection in audio-associated visibility network.
    Melo DFP; Fadigas IS; de Barros Pereira HB
    Appl Netw Sci; 2017; 2(1):32. PubMed ID: 30443586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of spectral timbre cues and musical instrument identification in cochlear implant recipients.
    Meister H; Landwehr M; Lang-Roth R; Streicher B; Walger M
    Cochlear Implants Int; 2014 Mar; 15(2):78-86. PubMed ID: 24597635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise.
    Pallesen KJ; Bailey CJ; Brattico E; Gjedde A; Palva JM; Palva S
    PLoS One; 2015; 10(8):e0134211. PubMed ID: 26291324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perception of musical timbre by cochlear implant listeners: a multidimensional scaling study.
    Macherey O; Delpierre A
    Ear Hear; 2013; 34(4):426-36. PubMed ID: 23334356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.