BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 16642984)

  • 21. Application of flow-injection potentiometric system for determination of total concentration of aliphatic carboxylic acids.
    Mroczkiewicz M; Górski Ł; Zamojska-Jaroszewicz A; Szewczyk KW; Malinowska E
    Talanta; 2011 Sep; 85(4):2047-52. PubMed ID: 21872056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip.
    Hromada LP; Nablo BJ; Kasianowicz JJ; Gaitan MA; DeVoe DL
    Lab Chip; 2008 Apr; 8(4):602-8. PubMed ID: 18369516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a tubular fluoride potentiometric detector for flow analysis: evaluation and analytical applications.
    Santos JR; Lapa RA; Lima JL
    Anal Chim Acta; 2007 Feb; 583(2):429-36. PubMed ID: 17386576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A disposable and cost efficient microfluidic device for the rapid chip-based electrical detection of DNA.
    Schüler T; Kretschmer R; Jessing S; Urban M; Fritzsche W; Möller R; Popp J
    Biosens Bioelectron; 2009 Sep; 25(1):15-21. PubMed ID: 19592230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pharmaceutical modulation of diffusion potentials at aqueous-aqueous boundaries under laminar flow conditions.
    Collins CJ; Strutwolf J; Arrigan DW
    Electrophoresis; 2011 Apr; 32(8):844-9. PubMed ID: 21437916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design, fabrication and characterization of monolithic embedded parylene microchannels in silicon substrate.
    Chen PJ; Shih CY; Tai YC
    Lab Chip; 2006 Jun; 6(6):803-10. PubMed ID: 16738734
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the detection limits of antispasmodic drugs electrodes by using modified membrane sensors with inner solid contact.
    Ibrahim H; Issa YM; Abu-Shawish HM
    J Pharm Biomed Anal; 2007 May; 44(1):8-15. PubMed ID: 17383844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selective uranyl ion detection by polymeric ion-selective electrodes based on salphenH2 derivatives.
    Kim DW; Park KW; Yang MH; Kim TH; Mahajan RK; Kim JS
    Talanta; 2007 Nov; 74(2):223-8. PubMed ID: 18371633
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust polymer microfluidic device fabrication via contact liquid photolithographic polymerization (CLiPP).
    Hutchison JB; Haraldsson KT; Good BT; Sebra RP; Luo N; Anseth KS; Bowman CN
    Lab Chip; 2004 Dec; 4(6):658-62. PubMed ID: 15570381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analytical and numerical study of Joule heating effects on electrokinetically pumped continuous flow PCR chips.
    Gui L; Ren CL
    Langmuir; 2008 Mar; 24(6):2938-46. PubMed ID: 18257592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Screen-printed microfluidic device for electrochemical immunoassay.
    Dong H; Li CM; Zhang YF; Cao XD; Gan Y
    Lab Chip; 2007 Dec; 7(12):1752-8. PubMed ID: 18030397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical techniques for microfluidic applications.
    Sassa F; Morimoto K; Satoh W; Suzuki H
    Electrophoresis; 2008 May; 29(9):1787-800. PubMed ID: 18384068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Technique for microfabrication of polymeric-based microchips from an SU-8 master with temperature-assisted vaporized organic solvent bonding.
    Koesdjojo MT; Koch CR; Remcho VT
    Anal Chem; 2009 Feb; 81(4):1652-9. PubMed ID: 19166284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current-driven ion fluxes of polymeric membrane ion-selective electrode for potentiometric biosensing.
    Ding J; Qin W
    J Am Chem Soc; 2009 Oct; 131(41):14640-1. PubMed ID: 19785410
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrochemical detection for paper-based microfluidics.
    Dungchai W; Chailapakul O; Henry CS
    Anal Chem; 2009 Jul; 81(14):5821-6. PubMed ID: 19485415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microsystems technology and biosensing.
    Sathuluri RR; Yamamura S; Tamiya E
    Adv Biochem Eng Biotechnol; 2008; 109():285-350. PubMed ID: 17999038
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New replication technique for the fabrication of thin polymeric microfluidic devices with tunable porosity.
    de Jong J; Ankoné B; Lammertink RG; Wessling M
    Lab Chip; 2005 Nov; 5(11):1240-7. PubMed ID: 16234947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A microfluidic fuel cell with flow-through porous electrodes.
    Kjeang E; Michel R; Harrington DA; Djilali N; Sinton D
    J Am Chem Soc; 2008 Mar; 130(12):4000-6. PubMed ID: 18314983
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogel-based reconfigurable components for microfluidic devices.
    Kim D; Beebe DJ
    Lab Chip; 2007 Feb; 7(2):193-8. PubMed ID: 17268621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
    Wu A; Wang L; Jensen E; Mathies R; Boser B
    Lab Chip; 2010 Feb; 10(4):519-21. PubMed ID: 20126694
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.