BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16643388)

  • 1. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study.
    Giridharan GA; Skliar M
    Artif Organs; 2006 Apr; 30(4):301-7. PubMed ID: 16643388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control system for an implantable rotary blood pump.
    Nakata KI; Yoshikawa M; Takano T; Sankai Y; Ohtsuka G; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosaka S; Nose Y
    Ann Thorac Cardiovasc Surg; 2000 Aug; 6(4):242-6. PubMed ID: 11042480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic controller for left ventricular assist device based on pulsatility ratio.
    Choi S; Boston JR; Antaki JF
    Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method for control of an implantable rotary blood pump for heart failure patients using noninvasive measurements.
    Lim E; Alomari AH; Savkin AV; Dokos S; Fraser JF; Timms DL; Mason DG; Lovell NH
    Artif Organs; 2011 Aug; 35(8):E174-80. PubMed ID: 21843286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance prediction of a percutaneous ventricular assist system using nonlinear circuit analysis techniques.
    Yu YC; Simaan MA; Mushi SE; Zorn NV
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):419-29. PubMed ID: 18269977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance.
    Untaroiu A; Throckmorton AL; Patel SM; Wood HG; Allaire PE; Olsen DB
    Artif Organs; 2005 Jul; 29(7):581-91. PubMed ID: 15982287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive activity-based control of an implantable rotary blood pump: comparative software simulation study.
    Karantonis DM; Lim E; Mason DG; Salamonsen RF; Ayre PJ; Lovell NH
    Artif Organs; 2010 Feb; 34(2):E34-45. PubMed ID: 20420588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mathematical model to evaluate control strategies for mechanical circulatory support.
    Cox LG; Loerakker S; Rutten MC; de Mol BA; van de Vosse FN
    Artif Organs; 2009 Aug; 33(8):593-603. PubMed ID: 19558561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computer model of the pediatric circulatory system for testing pediatric assist devices.
    Giridharan GA; Koenig SC; Mitchell M; Gartner M; Pantalos GM
    ASAIO J; 2007; 53(1):74-81. PubMed ID: 17237652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new technique to control brushless motor for blood pump application.
    Fonseca J; Andrade A; Nicolosi DE; Biscegli JF; Legendre D; Bock E; Lucchi JC
    Artif Organs; 2008 Apr; 32(4):355-9. PubMed ID: 18370953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling and identification of an intra-aorta pump.
    Chang Y; Gao B
    ASAIO J; 2010; 56(6):504-9. PubMed ID: 21245795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological control of dual rotary pumps as a biventricular assist device using a master/slave approach.
    Stevens MC; Wilson S; Bradley A; Fraser J; Timms D
    Artif Organs; 2014 Sep; 38(9):766-74. PubMed ID: 24749848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suction prevention and physiologic control of continuous flow left ventricular assist devices using intrinsic pump parameters.
    Wang Y; Koenig SC; Slaughter MS; Giridharan GA
    ASAIO J; 2015; 61(2):170-7. PubMed ID: 25396276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.
    Arndt A; Nüsser P; Graichen K; Müller J; Lampe B
    Artif Organs; 2008 Oct; 32(10):761-71. PubMed ID: 18959664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of muscle pump on rotary blood pumps in dynamic exercise: a computer simulation study.
    Wu Y; Lim S
    Cardiovasc Eng; 2008 Sep; 8(3):149-58. PubMed ID: 18563564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sliding mode-based starling-like controller for implantable rotary blood pumps.
    Bakouri MA; Salamonsen RF; Savkin AV; AlOmari AH; Lim E; Lovell NH
    Artif Organs; 2014 Jul; 38(7):587-93. PubMed ID: 24274084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.