BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16643603)

  • 1. Large DNA palindromes as a common form of structural chromosome aberrations in human cancers.
    Tanaka H; Bergstrom DA; Yao MC; Tapscott SJ
    Hum Cell; 2006 Feb; 19(1):17-23. PubMed ID: 16643603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widespread and nonrandom distribution of DNA palindromes in cancer cells provides a structural platform for subsequent gene amplification.
    Tanaka H; Bergstrom DA; Yao MC; Tapscott SJ
    Nat Genet; 2005 Mar; 37(3):320-7. PubMed ID: 15711546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myc oncogene-induced genomic instability: DNA palindromes in bursal lymphomagenesis.
    Neiman PE; Elsaesser K; Loring G; Kimmel R
    PLoS Genet; 2008 Jul; 4(7):e1000132. PubMed ID: 18636108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-Wide Analysis of Palindrome Formation with Next-Generation Sequencing (GAPF-Seq) and a Bioinformatics Pipeline for Assessing De Novo Palindromes in Cancer Genomes.
    Murata MM; Giuliano AE; Tanaka H
    Methods Mol Biol; 2023; 2660():13-22. PubMed ID: 37191787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrastrand annealing leads to the formation of a large DNA palindrome and determines the boundaries of genomic amplification in human cancer.
    Tanaka H; Cao Y; Bergstrom DA; Kooperberg C; Tapscott SJ; Yao MC
    Mol Cell Biol; 2007 Mar; 27(6):1993-2002. PubMed ID: 17242211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palindromes in DNA-A Risk for Genome Stability and Implications in Cancer.
    Svetec Miklenić M; Svetec IK
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of palindromes as platforms for DNA amplification in breast cancer.
    Guenthoer J; Diede SJ; Tanaka H; Chai X; Hsu L; Tapscott SJ; Porter PL
    Genome Res; 2012 Feb; 22(2):232-45. PubMed ID: 21752925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks.
    Narayanan V; Mieczkowski PA; Kim HM; Petes TD; Lobachev KS
    Cell; 2006 Jun; 125(7):1283-96. PubMed ID: 16814715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic instability during Myc-induced lymphomagenesis in the bursa of Fabricius.
    Neiman PE; Kimmel R; Icreverzi A; Elsaesser K; Bowers SJ; Burnside J; Delrow J
    Oncogene; 2006 Oct; 25(47):6325-35. PubMed ID: 16652139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes.
    Butler DK; Yasuda LE; Yao MC
    Cell; 1996 Dec; 87(6):1115-22. PubMed ID: 8978615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GAP-Seq: a method for identification of DNA palindromes.
    Yang H; Volfovsky N; Rattray A; Chen X; Tanaka H; Strathern J
    BMC Genomics; 2014 May; 15(1):394. PubMed ID: 24885769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution.
    Bignell GR; Santarius T; Pole JC; Butler AP; Perry J; Pleasance E; Greenman C; Menzies A; Taylor S; Edkins S; Campbell P; Quail M; Plumb B; Matthews L; McLay K; Edwards PA; Rogers J; Wooster R; Futreal PA; Stratton MR
    Genome Res; 2007 Sep; 17(9):1296-303. PubMed ID: 17675364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palindrome content of the yeast Saccharomyces cerevisiae genome.
    Lisnić B; Svetec IK; Sarić H; Nikolić I; Zgaga Z
    Curr Genet; 2005 May; 47(5):289-97. PubMed ID: 15776233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of large palindromic DNA by homologous recombination of short inverted repeat sequences in Saccharomyces cerevisiae.
    Butler DK; Gillespie D; Steele B
    Genetics; 2002 Jul; 161(3):1065-75. PubMed ID: 12136011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short inverted repeats initiate gene amplification through the formation of a large DNA palindrome in mammalian cells.
    Tanaka H; Tapscott SJ; Trask BJ; Yao MC
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8772-7. PubMed ID: 12060719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long palindromes formed in Streptomyces by nonrecombinational intra-strand annealing.
    Qin Z; Cohen SN
    Genes Dev; 2000 Jul; 14(14):1789-96. PubMed ID: 10898793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palindromes and genomic stress fractures: bracing and repairing the damage.
    Lewis SM; Coté AG
    DNA Repair (Amst); 2006 Sep; 5(9-10):1146-60. PubMed ID: 16807136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pilot study on the prevalence of DNA palindromes in breast cancer genomes.
    Subramanian S; Chaparala S; Avali V; Ganapathiraju MK
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):73. PubMed ID: 28117658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The human genome-wide distribution of DNA palindromes.
    Lu L; Jia H; Dröge P; Li J
    Funct Integr Genomics; 2007 Jul; 7(3):221-7. PubMed ID: 17340149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA amplification by breakage/fusion/bridge cycles initiated by spontaneous telomere loss in a human cancer cell line.
    Lo AW; Sabatier L; Fouladi B; Pottier G; Ricoul M; Murnane JP
    Neoplasia; 2002; 4(6):531-8. PubMed ID: 12407447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.