These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16643651)

  • 1. Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera).
    Ellwanger K; Nickel M
    Front Zool; 2006 Apr; 3():7. PubMed ID: 16643651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae).
    Nickel M
    J Exp Biol; 2004 Dec; 207(Pt 26):4515-24. PubMed ID: 15579547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GABA and glutamate specifically induce contractions in the sponge Tethya wilhelma.
    Ellwanger K; Eich A; Nickel M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jan; 193(1):1-11. PubMed ID: 17021832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The contraction-expansion behaviour in the demosponge Tethya wilhelma is light controlled and follows a diurnal rhythm.
    Flensburg SB; Garm A; Funch P
    J Exp Biol; 2022 Dec; 225(24):. PubMed ID: 36546534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Like a 'rolling stone': quantitative analysis of the body movement and skeletal dynamics of the sponge Tethya wilhelma.
    Nickel M
    J Exp Biol; 2006 Aug; 209(Pt 15):2839-46. PubMed ID: 16857867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The contractile sponge epithelium sensu lato--body contraction of the demosponge Tethya wilhelma is mediated by the pinacoderm.
    Nickel M; Scheer C; Hammel JU; Herzen J; Beckmann F
    J Exp Biol; 2011 May; 214(Pt 10):1692-8. PubMed ID: 21525315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for glutamate, GABA and NO in coordinating behaviour in the sponge, Ephydatia muelleri (Demospongiae, Spongillidae).
    Elliott GR; Leys SP
    J Exp Biol; 2010 Jul; 213(Pt 13):2310-21. PubMed ID: 20543130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sponge budding is a spatiotemporal morphological patterning process: Insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma.
    Hammel JU; Herzen J; Beckmann F; Nickel M
    Front Zool; 2009 Sep; 6():19. PubMed ID: 19737392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new flow-regulating cell type in the Demosponge Tethya wilhelma - functional cellular anatomy of a leuconoid canal system.
    Hammel JU; Nickel M
    PLoS One; 2014; 9(11):e113153. PubMed ID: 25409176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of isoprenaline on the contraction-relaxation cycle in the cat trachea.
    Ito Y; Itoh T
    Br J Pharmacol; 1984 Nov; 83(3):677-86. PubMed ID: 6095960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission.
    Shao XM; Feldman JL
    J Neurophysiol; 1997 Apr; 77(4):1853-60. PubMed ID: 9114241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of
    Samaai T; Gibbons MJ; Muricy G
    Zootaxa; 2017 Nov; 4347(3):592-594. PubMed ID: 29245588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of protein kinase A activity depresses phrenic drive and glycinergic signalling, but not rhythmogenesis in anaesthetized rat.
    Burke PG; Sousa LO; Tallapragada VJ; Goodchild AK
    Eur J Neurosci; 2013 Jul; 38(2):2260-70. PubMed ID: 23627348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the sponge [Porifera] gene repertoire: implications for the evolution of the metazoan body plan.
    Müller WE; Müller IM
    Prog Mol Subcell Biol; 2003; 37():1-33. PubMed ID: 15825638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [T-channels and Na+,Ca2+-exchangers as components of the Ca2+-system of the myocardial activity regulation of the frog Rana temporaria].
    Shemarova IV; Kuznetsov SV; Demina IN; Nesterov VP
    Zh Evol Biokhim Fiziol; 2009; 45(3):319-28. PubMed ID: 19569558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histamine modulates contraction and cyclic nucleotides in cultured rat mesangial cells. Differential effects mediated by histamine H1 and H2 receptors.
    Sedor JR; Abboud HE
    J Clin Invest; 1985 May; 75(5):1679-89. PubMed ID: 2582001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acids integrate behaviors in nerveless placozoans.
    Nikitin MA; Romanova DY; Borman SI; Moroz LL
    Front Neurosci; 2023; 17():1125624. PubMed ID: 37123368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide synthase (NOS3) and contractile responsiveness to adrenergic and cholinergic agonists in the heart. Regulation of NOS3 transcription in vitro and in vivo by cyclic adenosine monophosphate in rat cardiac myocytes.
    Belhassen L; Kelly RA; Smith TW; Balligand JL
    J Clin Invest; 1996 Apr; 97(8):1908-15. PubMed ID: 8621775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated contractions effectively expel water from the aquiferous system of a freshwater sponge.
    Elliott GR; Leys SP
    J Exp Biol; 2007 Nov; 210(Pt 21):3736-48. PubMed ID: 17951414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of stored calcium in contractions of cat tracheal smooth muscle produced by electrical stimulation, acetylcholine and high K+.
    Ito Y; Itoh T
    Br J Pharmacol; 1984 Nov; 83(3):667-76. PubMed ID: 6439272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.