BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16643872)

  • 1. On the nitrile effect in L-rhamnopyranosylation.
    Crich D; Patel M
    Carbohydr Res; 2006 Jul; 341(10):1467-75. PubMed ID: 16643872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereocontrolled synthesis of D- and L-beta-rhamnopyranosides with 4-O-6-S-alpha-cyanobenzylidene-protected 6-thiorhamnopyranosyl thioglycosides.
    Crich D; Li L
    J Org Chem; 2009 Jan; 74(2):773-81. PubMed ID: 19132946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereospecific β-l-Rhamnopyranosylation through an S
    Nishi N; Sueoka K; Iijima K; Sawa R; Takahashi D; Toshima K
    Angew Chem Int Ed Engl; 2018 Oct; 57(42):13858-13862. PubMed ID: 30098095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aryl(trifluoroethyl)iodonium Triflimide and Nitrile Solvent Systems: A Combination for the Stereoselective Synthesis of Armed 1,2-trans-β-Glycosides at Noncryogenic Temperatures.
    Chu AH; Minciunescu A; Bennett CS
    Org Lett; 2015 Dec; 17(24):6262-5. PubMed ID: 26634960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of a multicomponent system: computational and mechanistic studies on the chemo- and stereoselectivity of a divergent process.
    Llabrés S; Vicente-García E; Preciado S; Guiu C; Pouplana R; Lavilla R; Luque FJ
    Chemistry; 2013 Sep; 19(40):13355-61. PubMed ID: 24078415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct synthesis of the beta-l-rhamnopyranosides.
    Crich D; Picione J
    Org Lett; 2003 Mar; 5(5):781-4. PubMed ID: 12605514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and intramolecular glycosylation of sialyl mono-esters of o-xylylene glycol. The importance of donor configuration and nitrogen protecting groups on cyclization yield and selectivity; isolation and characterization of a N-sialyl acetamide indicative of participation by acetonitrile.
    Amarasekara H; Crich D
    Carbohydr Res; 2016 Nov; 435():113-120. PubMed ID: 27744142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL100-21.
    DiGeronimo MJ; Antoine AD
    Appl Environ Microbiol; 1976 Jun; 31(6):900-6. PubMed ID: 938041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitriles at Silica Interfaces Resemble Supported Lipid Bilayers.
    Berne BJ; Fourkas JT; Walker RA; Weeks JD
    Acc Chem Res; 2016 Sep; 49(9):1605-13. PubMed ID: 27525616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IMPROVED SYNTHESIS OF 1-BENZENESULFINYL PIPERIDINE AND ANALOGS FOR THE ACTIVATION OF THIOGLYCOSIDES IN CONJUNCTION WITH TRIFLUOROMETHANESULFONIC ANHYDRIDE.
    Crich D; Banerjee A; Li W; Yao Q
    J Carbohydr Chem; 2005; 24(4-6):415-424. PubMed ID: 17315047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sialylation reactions with 5-N,7-O-carbonyl-protected sialyl donors: unusual stereoselectivity with nitrile solvent assistance.
    Tanaka H; Ando H; Ishihara H; Koketsu M
    Carbohydr Res; 2008 Jul; 343(10-11):1585-93. PubMed ID: 18502408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The 3,4-O-carbonate protecting group as a beta-directing group in rhamnopyranosylation in both homogeneous and heterogeneous glycosylations as compared to the chameleon-like 2,3-O-carbonates.
    Crich D; Vinod AU; Picione J
    J Org Chem; 2003 Oct; 68(22):8453-8. PubMed ID: 14575470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the sulfide mineral pyrite as electrochemical sensor in non-aqueous solutions: potentiometric titration of weak acids in acetonitrile, propionitrile and benzonitrile.
    Mihajlović L; Nikolić-Mandić S; Vukanović B; Mihajlović R
    Anal Sci; 2009 Mar; 25(3):437-41. PubMed ID: 19276604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of nitriles to amines in positive ion electrospray ionization mass spectrometry.
    Gu ZM; Ma J; Zhao XG; Wu J; Zhang D
    Rapid Commun Mass Spectrom; 2006; 20(19):2969-72. PubMed ID: 16952212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of the Salmonella type E(1) core trisaccharide as a probe for the generality of 1-(benzenesulfinyl)piperidine/triflic anhydride combination for glycosidic bond formation from thioglycosides.
    Crich D; Li H
    J Org Chem; 2002 Jul; 67(14):4640-6. PubMed ID: 12098270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the 4,6-O-benzylidene, 4,6-O-phenylboronate, and 4,6-O-polystyrylboronate protecting groups on the stereochemical outcome of thioglycoside-based glycosylations mediated by 1-benzenesulfinyl piperidine/triflic anhydride and N-iodosuccinimide/trimethylsilyl triflate.
    Crich D; de la Mora M; Vinod AU
    J Org Chem; 2003 Oct; 68(21):8142-8. PubMed ID: 14535796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectroscopic studies of the interaction between crown ethers and organic nitriles.
    Mosier-Boss PA
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(3):527-34. PubMed ID: 15582822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of acetonitrile and other aliphatic nitriles by a Candida famata strain.
    Linardi VR; Dias JC; Rosa CA
    FEMS Microbiol Lett; 1996 Oct; 144(1):67-71. PubMed ID: 8870254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoselective synthesis of β-rhamnopyranosides via gold(I)-catalyzed glycosylation with 2-alkynyl-4-nitro-benzoate donors.
    Zhu Y; Shen Z; Li W; Yu B
    Org Biomol Chem; 2016 Feb; 14(5):1536-9. PubMed ID: 26705552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-free condensation of phenylacetonitrile and nonanenitrile with 4-methoxybenzaldehyde: optimization and mechanistic studies.
    Loupy A; Pellet M; Petit A; Vo-Thanh G
    Org Biomol Chem; 2005 Apr; 3(8):1534-40. PubMed ID: 15827653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.