These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16643886)

  • 1. Hearts and bones: shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development.
    Lincoln J; Lange AW; Yutzey KE
    Dev Biol; 2006 Jun; 294(2):292-302. PubMed ID: 16643886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BMP and FGF regulatory pathways in semilunar valve precursor cells.
    Zhao B; Etter L; Hinton RB; Benson DW
    Dev Dyn; 2007 Apr; 236(4):971-80. PubMed ID: 17326134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chondrogenic differentiation of bovine synovium: bone morphogenetic proteins 2 and 7 and transforming growth factor beta1 induce the formation of different types of cartilaginous tissue.
    Shintani N; Hunziker EB
    Arthritis Rheum; 2007 Jun; 56(6):1869-79. PubMed ID: 17530715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sox9 is required for precursor cell expansion and extracellular matrix organization during mouse heart valve development.
    Lincoln J; Kist R; Scherer G; Yutzey KE
    Dev Biol; 2007 May; 305(1):120-32. PubMed ID: 17350610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development.
    Brent AE; Braun T; Tabin CJ
    Development; 2005 Feb; 132(3):515-28. PubMed ID: 15634692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K.
    Lange AW; Yutzey KE
    Dev Biol; 2006 Apr; 292(2):407-17. PubMed ID: 16680826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of heart valve leaflets and supporting apparatus in chicken and mouse embryos.
    Lincoln J; Alfieri CM; Yutzey KE
    Dev Dyn; 2004 Jun; 230(2):239-50. PubMed ID: 15162503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tenascin in connective tissue development and pathogenesis.
    Mackie EJ
    Perspect Dev Neurobiol; 1994; 2(1):125-32. PubMed ID: 7530139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sox9, a key transcription factor of bone morphogenetic protein-2-induced chondrogenesis, is activated through BMP pathway and a CCAAT box in the proximal promoter.
    Pan Q; Yu Y; Chen Q; Li C; Wu H; Wan Y; Ma J; Sun F
    J Cell Physiol; 2008 Oct; 217(1):228-41. PubMed ID: 18506848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2.
    Eames BF; Sharpe PT; Helms JA
    Dev Biol; 2004 Oct; 274(1):188-200. PubMed ID: 15355797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BMP and FGF regulatory pathways control cell lineage diversification of heart valve precursor cells.
    Lincoln J; Alfieri CM; Yutzey KE
    Dev Biol; 2006 Apr; 292(2):292-302. PubMed ID: 16680829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors.
    Blitz E; Sharir A; Akiyama H; Zelzer E
    Development; 2013 Jul; 140(13):2680-90. PubMed ID: 23720048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition and cooperation between tenascin-R, lecticans and contactin 1 regulate neurite growth and morphology.
    Zacharias U; Rauch U
    J Cell Sci; 2006 Aug; 119(Pt 16):3456-66. PubMed ID: 16899820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo.
    Levay AK; Peacock JD; Lu Y; Koch M; Hinton RB; Kadler KE; Lincoln J
    Circ Res; 2008 Oct; 103(9):948-56. PubMed ID: 18802027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacotherapy: concepts of pathogenesis and emerging treatments. Novel targets in bone and cartilage.
    Beyer C; Schett G
    Best Pract Res Clin Rheumatol; 2010 Aug; 24(4):489-96. PubMed ID: 20732647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endochondral ossification: how cartilage is converted into bone in the developing skeleton.
    Mackie EJ; Ahmed YA; Tatarczuch L; Chen KS; Mirams M
    Int J Biochem Cell Biol; 2008; 40(1):46-62. PubMed ID: 17659995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells.
    Kollet O; Dar A; Shivtiel S; Kalinkovich A; Lapid K; Sztainberg Y; Tesio M; Samstein RM; Goichberg P; Spiegel A; Elson A; Lapidot T
    Nat Med; 2006 Jun; 12(6):657-64. PubMed ID: 16715089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [BMP and osteoclastogenesis].
    Nakamura M; Udagawa N; Yamamoto Y; Nakamura H
    Clin Calcium; 2006 May; 16(5):809-15. PubMed ID: 16679623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thar's tendons in them thar valves!
    Benson DW
    Circ Res; 2008 Oct; 103(9):914-5. PubMed ID: 18948629
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.