BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 16643958)

  • 1. Midkine is a potent regulator of the catecholamine biosynthesis pathway in mouse aorta.
    Ezquerra L; Herradon G; Nguyen T; Silos-Santiago I; Deuel TF
    Life Sci; 2006 Aug; 79(11):1049-55. PubMed ID: 16643958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pleiotrophin is a major regulator of the catecholamine biosynthesis pathway in mouse aorta.
    Ezquerra L; Herradón G; Nguyen T; Vogt TF; Bronson R; Silos-Santiago I; Deuel TF
    Biochem Biophys Res Commun; 2004 Oct; 323(2):512-7. PubMed ID: 15369781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Midkine regulates pleiotrophin organ-specific gene expression: evidence for transcriptional regulation and functional redundancy within the pleiotrophin/midkine developmental gene family.
    Herradon G; Ezquerra L; Nguyen T; Silos-Santiago I; Deuel TF
    Biochem Biophys Res Commun; 2005 Aug; 333(3):714-21. PubMed ID: 15985215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Midkine, a newly discovered regulator of the renin-angiotensin pathway in mouse aorta: significance of the pleiotrophin/midkine developmental gene family in angiotensin II signaling.
    Ezquerra L; Herradon G; Nguyen T; Silos-Santiago I; Deuel TF
    Biochem Biophys Res Commun; 2005 Jul; 333(2):636-43. PubMed ID: 15979460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pleiotrophin is an important regulator of the renin-angiotensin system in mouse aorta.
    Herradon G; Ezquerra L; Nguyen T; Vogt TF; Bronson R; Silos-Santiago I; Deuel TF
    Biochem Biophys Res Commun; 2004 Nov; 324(3):1041-7. PubMed ID: 15485659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-induced alterations in catecholamine enzymes gene expression in the hypothalamic dorsomedial nucleus are modulated by caudal brain and not hypothalamic paraventricular nucleus neurons.
    Mravec B; Lukackova R; Bodnar I; Kiss A; Pacak K; Palkovits M; Kvetnansky R
    Brain Res Bull; 2007 Sep; 74(1-3):147-54. PubMed ID: 17683801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The heparin binding growth factors midkine and pleiotrophin regulate the antinociceptive effects of morphine through α(2)-adrenergic independent mechanisms.
    Gramage E; Martín YB; Herradon G
    Pharmacol Biochem Behav; 2012 May; 101(3):387-93. PubMed ID: 22342918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteomic analysis of the striatum from pleiotrophin knockout and midkine knockout mice treated with cocaine reveals regulation of oxidative stress-related proteins potentially underlying cocaine-induced neurotoxicity and neurodegeneration.
    Vicente-Rodríguez M; Gramage E; Herradón G; Pérez-García C
    Toxicology; 2013 Dec; 314(1):166-73. PubMed ID: 24096156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes for human catecholamine-synthesizing enzymes.
    Nagatsu T
    Neurosci Res; 1991 Oct; 12(2):315-45. PubMed ID: 1684650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial cells are able to synthesize and release catecholamines both in vitro and in vivo.
    Sorriento D; Santulli G; Del Giudice C; Anastasio A; Trimarco B; Iaccarino G
    Hypertension; 2012 Jul; 60(1):129-36. PubMed ID: 22665130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different pattern of pleiotrophin and midkine expression in neuropathic pain: correlation between changes in pleiotrophin gene expression and rat strain differences in neuropathic pain.
    Ezquerra L; Alguacil LF; Nguyen T; Deuel TF; Silos-Santiago I; Herradon G
    Growth Factors; 2008 Feb; 26(1):44-8. PubMed ID: 18365878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of midkine and pleiotrophin in liver regeneration.
    Ochiai K; Muramatsu H; Yamamoto S; Ando H; Muramatsu T
    Liver Int; 2004 Oct; 24(5):484-91. PubMed ID: 15482347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catecholamine synthesizing enzymes and their modulation by immobilization stress in knockout mice.
    Kubovcakova L; Tybitanclova K; Sabban EL; Majzoub J; Zorad S; Vietor I; Wagner EF; Krizanova O; Kvetnansky R
    Ann N Y Acad Sci; 2004 Jun; 1018():458-65. PubMed ID: 15240402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Midkine and pleiotrophin in neural development and cancer.
    Kadomatsu K; Muramatsu T
    Cancer Lett; 2004 Feb; 204(2):127-43. PubMed ID: 15013213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic isolation of adult rats decreases gene expression of catecholamine biosynthetic enzymes in adrenal medulla.
    Gavrilovic L; Spasojevic N; Tanic N; Dronjak S
    Neuro Endocrinol Lett; 2008 Dec; 29(6):1015-20. PubMed ID: 19112418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of extinction of cocaine-induced place preference by midkine is related to a differential phosphorylation of peroxiredoxin 6 in dorsal striatum.
    Gramage E; Pérez-García C; Vicente-Rodríguez M; Bollen S; Rojo L; Herradón G
    Behav Brain Res; 2013 Sep; 253():223-31. PubMed ID: 23891929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axonal flow of enzymes involved in the biosynthesis of catecholamines.
    Laduron P
    Acta Physiol Scand Suppl; 1970; 357():14. PubMed ID: 4101182
    [No Abstract]   [Full Text] [Related]  

  • 18. Differential phosphoproteome of the striatum from pleiotrophin knockout and midkine knockout mice treated with amphetamine: correlations with amphetamine-induced neurotoxicity.
    Gramage E; Herradón G; Martín YB; Vicente-Rodríguez M; Rojo L; Gnekow H; Barbero A; Pérez-García C
    Toxicology; 2013 Apr; 306():147-56. PubMed ID: 23459167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absence of mouse pleiotrophin does not affect bone formation in vivo.
    Lehmann W; Schinke T; Schilling AF; Catalá-Lehnen P; Gebauer M; Pogoda P; Gerstenfeld LC; Rueger JM; Einhorn TA; Amling M
    Bone; 2004 Dec; 35(6):1247-55. PubMed ID: 15589206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic inactivation of pleiotrophin triggers amphetamine-induced cell loss in the substantia nigra and enhances amphetamine neurotoxicity in the striatum.
    Gramage E; Rossi L; Granado N; Moratalla R; Herradón G
    Neuroscience; 2010 Sep; 170(1):308-16. PubMed ID: 20620199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.