BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 16644098)

  • 1. The p38 MAPK signaling pathway: a major regulator of skeletal muscle development.
    Keren A; Tamir Y; Bengal E
    Mol Cell Endocrinol; 2006 Jun; 252(1-2):224-30. PubMed ID: 16644098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p38 MAP kinase regulates the expression of XMyf5 and affects distinct myogenic programs during Xenopus development.
    Keren A; Bengal E; Frank D
    Dev Biol; 2005 Dec; 288(1):73-86. PubMed ID: 16248994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PKR is a novel functional direct player that coordinates skeletal muscle differentiation via p38MAPK/AKT pathways.
    Alisi A; Spaziani A; Anticoli S; Ghidinelli M; Balsano C
    Cell Signal; 2008 Mar; 20(3):534-42. PubMed ID: 18164587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of skeletal muscle gene expression by p38 MAP kinases.
    Lluís F; Perdiguero E; Nebreda AR; Muñoz-Cánoves P
    Trends Cell Biol; 2006 Jan; 16(1):36-44. PubMed ID: 16325404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergence of Igf2 expression and adhesion signalling via RhoA and p38 MAPK enhances myogenic differentiation.
    Lovett FA; Gonzalez I; Salih DA; Cobb LJ; Tripathi G; Cosgrove RA; Murrell A; Kilshaw PJ; Pell JM
    J Cell Sci; 2006 Dec; 119(Pt 23):4828-40. PubMed ID: 17105766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MAP kinase converts MyoD into an instructive muscle differentiation factor in Xenopus.
    Zetser A; Frank D; Bengal E
    Dev Biol; 2001 Dec; 240(1):168-81. PubMed ID: 11784054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of p38 MAPK signaling promotes late stages of myogenesis.
    Weston AD; Sampaio AV; Ridgeway AG; Underhill TM
    J Cell Sci; 2003 Jul; 116(Pt 14):2885-93. PubMed ID: 12771182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic analysis of p38 MAP kinases in myogenesis: fundamental role of p38alpha in abrogating myoblast proliferation.
    Perdiguero E; Ruiz-Bonilla V; Gresh L; Hui L; Ballestar E; Sousa-Victor P; Baeza-Raja B; Jardí M; Bosch-Comas A; Esteller M; Caelles C; Serrano AL; Wagner EF; Muñoz-Cánoves P
    EMBO J; 2007 Mar; 26(5):1245-56. PubMed ID: 17304211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strong induction of the Tis11B gene in myogenic differentiation.
    Busse M; Schwarzburger M; Berger F; Hacker C; Munz B
    Eur J Cell Biol; 2008 Jan; 87(1):31-8. PubMed ID: 17889962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha.
    Yoon MJ; Lee GY; Chung JJ; Ahn YH; Hong SH; Kim JB
    Diabetes; 2006 Sep; 55(9):2562-70. PubMed ID: 16936205
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The homeobox gene Arx is a novel positive regulator of embryonic myogenesis.
    Biressi S; Messina G; Collombat P; Tagliafico E; Monteverde S; Benedetti L; Cusella De Angelis MG; Mansouri A; Ferrari S; Tajbakhsh S; Broccoli V; Cossu G
    Cell Death Differ; 2008 Jan; 15(1):94-104. PubMed ID: 17932502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of c-Src activity stimulates muscle differentiation via p38 MAPK activation.
    Lim MJ; Seo YH; Choi KJ; Cho CH; Kim BS; Kim YH; Lee J; Lee H; Jung CY; Ha J; Kang I; Kim SS
    Arch Biochem Biophys; 2007 Sep; 465(1):197-208. PubMed ID: 17612500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Notch pathway: from development to regeneration of skeletal muscle].
    Mayeuf A; Relaix F
    Med Sci (Paris); 2011 May; 27(5):521-6. PubMed ID: 21609674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of cell cycle regulatory and inflammatory genes as predominant targets of p38 mitogen-activated protein kinase in the heart.
    Tenhunen O; Rysä J; Ilves M; Soini Y; Ruskoaho H; Leskinen H
    Circ Res; 2006 Sep; 99(5):485-93. PubMed ID: 16873723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of exercise on activation of the p38 mitogen-activated protein kinase pathway, c-Jun NH2 terminal kinase, and heat shock protein 27 in equine skeletal muscle.
    van Ginneken MM; de Graaf-Roelfsema E; Keizer HA; van Dam KG; Wijnberg ID; van der Kolk JH; van Breda E
    Am J Vet Res; 2006 May; 67(5):837-44. PubMed ID: 16649919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt.
    McDaneld TG; Spurlock DM
    J Anim Sci; 2008 Nov; 86(11):2897-902. PubMed ID: 18641171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential expression of entactin-1/nidogen-1 and entactin-2/nidogen-2 in myogenic differentiation.
    Neu R; Adams S; Munz B
    Differentiation; 2006 Dec; 74(9-10):573-82. PubMed ID: 17177854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transforming growth factor-beta 1 impairs endothelin-1-mediated contraction of brain vessels by inducing mitogen-activated protein (MAP) kinase phosphatase-1 and inhibiting p38 MAP kinase.
    Tong XK; Hamel E
    Mol Pharmacol; 2007 Dec; 72(6):1476-83. PubMed ID: 17848599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An unexpected role of TAFs and TRFs in skeletal muscle differentiation: switching core promoter complexes.
    Deato MD; Tjian R
    Cold Spring Harb Symp Quant Biol; 2008; 73():217-25. PubMed ID: 19022758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delineating v-Src downstream effector pathways in transformed myoblasts.
    Ciuffini L; Castellani L; Salvati E; Galletti S; Falcone G; Alemà S
    Oncogene; 2008 Jan; 27(4):528-39. PubMed ID: 17637741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.