These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 16644791)
1. How accurately can we control the FDR in analyzing microarray data? Jung SH; Jang W Bioinformatics; 2006 Jul; 22(14):1730-6. PubMed ID: 16644791 [TBL] [Abstract][Full Text] [Related]
2. A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data. Xie Y; Pan W; Khodursky AB Bioinformatics; 2005 Dec; 21(23):4280-8. PubMed ID: 16188930 [TBL] [Abstract][Full Text] [Related]
3. Multidimensional local false discovery rate for microarray studies. Ploner A; Calza S; Gusnanto A; Pawitan Y Bioinformatics; 2006 Mar; 22(5):556-65. PubMed ID: 16368770 [TBL] [Abstract][Full Text] [Related]
4. Estimation of false discovery proportion under general dependence. Pawitan Y; Calza S; Ploner A Bioinformatics; 2006 Dec; 22(24):3025-31. PubMed ID: 17046978 [TBL] [Abstract][Full Text] [Related]
5. Comparison of seven methods for producing Affymetrix expression scores based on False Discovery Rates in disease profiling data. Shedden K; Chen W; Kuick R; Ghosh D; Macdonald J; Cho KR; Giordano TJ; Gruber SB; Fearon ER; Taylor JM; Hanash S BMC Bioinformatics; 2005 Feb; 6():26. PubMed ID: 15705192 [TBL] [Abstract][Full Text] [Related]
6. Practical FDR-based sample size calculations in microarray experiments. Hu J; Zou F; Wright FA Bioinformatics; 2005 Aug; 21(15):3264-72. PubMed ID: 15932903 [TBL] [Abstract][Full Text] [Related]
7. Sample size for FDR-control in microarray data analysis. Jung SH Bioinformatics; 2005 Jul; 21(14):3097-104. PubMed ID: 15845654 [TBL] [Abstract][Full Text] [Related]
8. A new outlier removal approach for cDNA microarray normalization. Wu Y; Yan L; Liu H; Sun H; Xie H Biotechniques; 2009 Aug; 47(2):691-2, 694-700. PubMed ID: 19737130 [TBL] [Abstract][Full Text] [Related]
9. Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments. Gao X Bioinformatics; 2006 Jun; 22(12):1486-94. PubMed ID: 16574697 [TBL] [Abstract][Full Text] [Related]
10. Combining multiple microarrays in the presence of controlling variables. Park T; Yi SG; Shin YK; Lee S Bioinformatics; 2006 Jul; 22(14):1682-9. PubMed ID: 16705015 [TBL] [Abstract][Full Text] [Related]
11. Selection and validation of normalization methods for c-DNA microarrays using within-array replications. Fan J; Niu Y Bioinformatics; 2007 Sep; 23(18):2391-8. PubMed ID: 17660210 [TBL] [Abstract][Full Text] [Related]
12. Re-sampling strategy to improve the estimation of number of null hypotheses in FDR control under strong correlation structures. Lu X; Perkins DL BMC Bioinformatics; 2007 May; 8():157. PubMed ID: 17509157 [TBL] [Abstract][Full Text] [Related]
13. Data-adaptive test statistics for microarray data. Mukherjee S; Roberts SJ; van der Laan MJ Bioinformatics; 2005 Sep; 21 Suppl 2():ii108-14. PubMed ID: 16204088 [TBL] [Abstract][Full Text] [Related]
14. Estimating the false discovery rate using nonparametric deconvolution. van de Wiel MA; Kim KI Biometrics; 2007 Sep; 63(3):806-15. PubMed ID: 17825012 [TBL] [Abstract][Full Text] [Related]
15. Empirical Bayes screening of many p-values with applications to microarray studies. Datta S; Datta S Bioinformatics; 2005 May; 21(9):1987-94. PubMed ID: 15691856 [TBL] [Abstract][Full Text] [Related]
16. Group testing for pathway analysis improves comparability of different microarray datasets. Manoli T; Gretz N; Gröne HJ; Kenzelmann M; Eils R; Brors B Bioinformatics; 2006 Oct; 22(20):2500-6. PubMed ID: 16895928 [TBL] [Abstract][Full Text] [Related]
17. Exploiting sample variability to enhance multivariate analysis of microarray data. Möller-Levet CS; West CM; Miller CJ Bioinformatics; 2007 Oct; 23(20):2733-40. PubMed ID: 17827205 [TBL] [Abstract][Full Text] [Related]
18. The effects of normalization on the correlation structure of microarray data. Qiu X; Brooks AI; Klebanov L; Yakovlev N BMC Bioinformatics; 2005 May; 6():120. PubMed ID: 15904488 [TBL] [Abstract][Full Text] [Related]
19. Rosetta error model for gene expression analysis. Weng L; Dai H; Zhan Y; He Y; Stepaniants SB; Bassett DE Bioinformatics; 2006 May; 22(9):1111-21. PubMed ID: 16522673 [TBL] [Abstract][Full Text] [Related]
20. Improved estimation of the noncentrality parameter distribution from a large number of t-statistics, with applications to false discovery rate estimation in microarray data analysis. Qu L; Nettleton D; Dekkers JC Biometrics; 2012 Dec; 68(4):1178-87. PubMed ID: 22551000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]