BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 16644910)

  • 1. Locus coeruleus is a central chemoreceptive site in toads.
    Noronha-de-Souza CR; Bícego KC; Michel G; Glass ML; Branco LG; Gargaglioni LH
    Am J Physiol Regul Integr Comp Physiol; 2006 Oct; 291(4):R997-1006. PubMed ID: 16644910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locus coeruleus noradrenergic neurons and CO2 drive to breathing.
    Biancardi V; Bícego KC; Almeida MC; Gargaglioni LH
    Pflugers Arch; 2008 Mar; 455(6):1119-28. PubMed ID: 17851683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of sex hormones in hypercapnia-induced activation of the locus coeruleus in female and male rats.
    de Carvalho D; Marques DA; Bernuci MP; Leite CM; Araújo-Lopes R; Anselmo-Franci J; Bícego KC; Szawka RE; Gargaglioni LH
    Neuroscience; 2016 Jan; 313():36-45. PubMed ID: 26601772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of glutamate in the nucleus isthmi on the hypoxia- and hypercarbia-induced hyperventilation of toads.
    Gargaglioni LH; Branco LG
    Respir Physiol Neurobiol; 2003 Apr; 135(1):47-58. PubMed ID: 12706065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the locus coeruleus catecholaminergic neurons in the chemosensory control of breathing in a Parkinson's disease model.
    Oliveira LM; Tuppy M; Moreira TS; Takakura AC
    Exp Neurol; 2017 Jul; 293():172-180. PubMed ID: 28431876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Orexin in the toad Rhinella schneideri: The location of orexinergic neurons and the role of orexin in ventilatory responses to hypercarbia and hypoxia.
    Fonseca EM; Dias MB; Bícego KC; Gargaglioni LH
    Respir Physiol Neurobiol; 2016 Apr; 224():90-9. PubMed ID: 25434286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical perspectives on central chemosensitivity: CO2/H+-sensitive neurons in the locus coeruleus.
    Quintero MC; Putnam RW; Cordovez JM
    PLoS Comput Biol; 2017 Dec; 13(12):e1005853. PubMed ID: 29267284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature influences neuronal activity and CO2/pH sensitivity of locus coeruleus neurons in the bullfrog, Lithobates catesbeianus.
    Santin JM; Watters KC; Putnam RW; Hartzler LK
    Am J Physiol Regul Integr Comp Physiol; 2013 Dec; 305(12):R1451-64. PubMed ID: 24108868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic hypercapnia modulates respiratory-related central pH/CO2 chemoreception in an amphibian, Bufo marinus.
    Gheshmy A; Vukelich R; Noronha A; Reid SG
    J Exp Biol; 2006 Mar; 209(Pt 6):1135-46. PubMed ID: 16513940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Participation of locus coeruleus in breathing control in female rats.
    de Carvalho D; Patrone LGA; Marques DA; Vicente MC; Szawka RE; Anselmo-Franci JA; Bícego KC; Gargaglioni LH
    Respir Physiol Neurobiol; 2017 Nov; 245():29-36. PubMed ID: 28687484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP in the locus coeruleus as a modulator of cardiorespiratory control in unanaesthetized male rats.
    Biancardi V; Bícego KC; Gargaglioni LH
    Exp Physiol; 2014 Jan; 99(1):232-47. PubMed ID: 24058188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular profiling of CO
    Amaral-Silva L; Santin JM
    Comp Biochem Physiol A Mol Integr Physiol; 2023 Sep; 283():111453. PubMed ID: 37230318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticotropin-releasing factor in the locus coeruleus as a modulator of ventilation in rats.
    Incheglu JM; Bícego KC; Gargaglioni LH
    Respir Physiol Neurobiol; 2016 Nov; 233():73-80. PubMed ID: 27543446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The locus coeruleus and central chemosensitivity.
    Gargaglioni LH; Hartzler LK; Putnam RW
    Respir Physiol Neurobiol; 2010 Oct; 173(3):264-73. PubMed ID: 20435170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Central chemoreceptor drive to breathing in unanesthetized toads, Bufo paracnemis.
    Branco LG; Glass ML; Hoffmann A
    Respir Physiol; 1992 Feb; 87(2):195-204. PubMed ID: 1565892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO2/H(+) sensing: peripheral and central chemoreception.
    Lahiri S; Forster RE
    Int J Biochem Cell Biol; 2003 Oct; 35(10):1413-35. PubMed ID: 12818238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats.
    Stunden CE; Filosa JA; Garcia AJ; Dean JB; Putnam RW
    Respir Physiol; 2001 Sep; 127(2-3):135-55. PubMed ID: 11504586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nitric oxide in the nucleus isthmi on the hypoxic and hypercarbic drive to breathing of toads.
    Gargaglioni LH; Branco LG
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R338-45. PubMed ID: 11404310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical lesions of the nucleus isthmi increase the hypoxic and hypercarbic drive to breathing of toads.
    Gargaglioni LH; Coimbra NC; Branco LG
    Respir Physiol Neurobiol; 2002 Sep; 132(3):289-99. PubMed ID: 12208087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branchial CO(2) receptors and cardiorespiratory adjustments during hypercarbia in Pacific spiny dogfish (Squalus acanthias).
    McKendry JE; Milsom WK; Perry SF
    J Exp Biol; 2001 Apr; 204(Pt 8):1519-27. PubMed ID: 11273813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.