These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 16644939)

  • 1. Ion diffusion modelling of Fricke-agarose dosemeter gels.
    de Pasquale F; Barone P; Sebastiani G; d'Errico F; Egger E; Luciani AM; Pacilio M; Guidoni L; Viti V
    Radiat Prot Dosimetry; 2006; 120(1-4):151-4. PubMed ID: 16644939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical imaging of dose distributions in Fricke gels.
    Viti V; d'Errico F; Pacilio M; Luciani AM; Palma A; Grande S; Ranghiasci C; Adorante N; Guidoni L; Rosi A; Ranade M; de Pasquale F; Barone P; Sebastiani G
    Radiat Prot Dosimetry; 2006; 120(1-4):148-50. PubMed ID: 16614085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose imaging with gel-dosemeter layers: optical analysis and dedicated software.
    Gambarini G; Carrara M; Gay S; Tomatis S
    Radiat Prot Dosimetry; 2006; 120(1-4):144-7. PubMed ID: 16891350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gamma/neutron dose evaluation using Fricke gel and alanine gel dosimeters to be applied in boron neutron capture therapy.
    Mangueira TF; Silva CF; Coelho PR; Campos LL
    Appl Radiat Isot; 2010; 68(4-5):791-4. PubMed ID: 20122843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fricke gel-layer dosimetry in high dose-rate brachytherapy.
    Carrara M; Fallai C; Gambarini G; Negri A
    Appl Radiat Isot; 2010; 68(4-5):722-5. PubMed ID: 19850485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial resolution of magnetic resonance imaging Fricke-gel dosimetry is improved with a honeycomb phantom.
    Silva NA; Nicolucci P; Baffa O
    Med Phys; 2003 Jan; 30(1):17-20. PubMed ID: 12557973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fricke gel as a tool for dose distribution verification: optimization and characterization.
    Saur S; Strickert T; Wasboe E; Frengen J
    Phys Med Biol; 2005 Nov; 50(22):5251-61. PubMed ID: 16264251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of gel materials as radioactive 222Rn gas detectors.
    Espinosa G; Golzarri JI; Rickards J; Gammage RB
    Radiat Prot Dosimetry; 2006; 119(1-4):425-9. PubMed ID: 16709716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose reconstruction in irradiated Fricke-agarose gels by means of MRI and optical techniques: 2D modelling of diffusion of ferric ions.
    de Pasquale F; Luciani AM; Pacilio M; Guidoni L; Viti V; d'Errico F; Barone P; Sebastiani G
    Radiat Prot Dosimetry; 2002; 99(1-4):363-4. PubMed ID: 12194325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A least-squares error minimization approach in the determination of ferric ion diffusion coefficient of Fricke-infused dosimeter gels.
    Tseng YJ; Huang SC; Chu WC
    Med Phys; 2005 Apr; 32(4):1017-23. PubMed ID: 15895585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of PRESAGE: A new 3-D radiochromic solid polymer dosemeter for ionising radiation.
    Adamovics J; Maryanski MJ
    Radiat Prot Dosimetry; 2006; 120(1-4):107-12. PubMed ID: 16782984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of a BeO-based optically stimulated luminescence dosemeter.
    Sommer M; Henniger J
    Radiat Prot Dosimetry; 2006; 119(1-4):394-7. PubMed ID: 16735572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The efficiency of various thermoluminescence dosemeter types to heavy ions.
    Berger T; Hajek M; Summerer L; Fugger M; Vana N
    Radiat Prot Dosimetry; 2006; 120(1-4):365-8. PubMed ID: 16731690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison on characteristics of radiophotoluminescent glass dosemeters and thermoluminescent dosemeters.
    Hsu SM; Yeh SH; Lin MS; Chen WL
    Radiat Prot Dosimetry; 2006; 119(1-4):327-31. PubMed ID: 16709718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of optically stimulated luminescence from AL2O3:C in the dosimetry of high-energy heavy charged particle fields.
    Gaza R; Yukihara EG; McKeever SW
    Radiat Prot Dosimetry; 2006; 120(1-4):354-7. PubMed ID: 16644985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of the stem effect on radioluminescence signals from optical fibre Al2O3:C dosemeters.
    Marckmann CJ; Aznar MC; Andersen CE; Bøtter-Jensen L
    Radiat Prot Dosimetry; 2006; 119(1-4):363-7. PubMed ID: 16762967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type testing of an extremity finger stall dosemeter based on Harshaw TLD EXTRAD technology.
    Gilvin PJ; Luo LZ; Baker ST; Hill CE; Rotunda JE
    Radiat Prot Dosimetry; 2007; 123(3):329-36. PubMed ID: 17132668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a high range TLD dosemeter.
    Perle S
    Radiat Prot Dosimetry; 2006; 119(1-4):263-6. PubMed ID: 16644941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On neutron-gamma mixed field dosimetry with LiF:Mg,Ti at radiation protection dose levels.
    Weinstein M; German U; Alfassi ZB
    Radiat Prot Dosimetry; 2006; 119(1-4):314-8. PubMed ID: 16735561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of LiF:Mg,Ti to low energy carbon and oxygen ions.
    Rodríguez-Villafuerte M; Avila O; Buenfil AE; Gamboa-deBuen I; Ruiz CG; Brandan ME
    Radiat Prot Dosimetry; 2006; 119(1-4):106-10. PubMed ID: 16698969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.