BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 16644980)

  • 41. On fading corrections for LiF:Mg,Ti irradiated by thermal neutrons.
    German U; Weinstein M; Dubinski A; Vainblat N; Alfassi ZB
    Radiat Prot Dosimetry; 2004; 110(1-4):305-8. PubMed ID: 15353664
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of LiF:Mg,Cu,Si TL material (new KLT-300) with a low-residual signal and high-thermal stability.
    Lee JI; Kim JL; Rahman MS; Chang SY; Chung KS; Choe HS
    Radiat Prot Dosimetry; 2007; 125(1-4):229-32. PubMed ID: 16968712
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On the relationship between dose-, energy- and LET-response of thermoluminescent detectors.
    Olko P; Bilski P; El-Faramawy NA; Göksu HY; Kim JL; Kopec R; Waligórski MP
    Radiat Prot Dosimetry; 2006; 119(1-4):15-22. PubMed ID: 16644968
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Studies on energy response of newly developed LiF:Mg,Cu,P TL chips with additional PbO doping.
    Tang K; Fan H; Cui H; Zhu H; Liu Z
    Radiat Prot Dosimetry; 2015 Feb; 163(3):284-7. PubMed ID: 24962516
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Extremity and whole-body dosemeters for beta and beta gamma fields based on LiF:Mg,Cu,P thin detectors.
    Pérez S; Ginjaume M; Ortega X; Duch MA; Roig M
    Radiat Prot Dosimetry; 2002; 101(1-4):261-6. PubMed ID: 12382748
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Preliminary dosimetric characterisation of thermoluminescent materials for beta radiation monitoring at nuclear medicine services.
    Cecatti SG; Caldas LV
    Radiat Prot Dosimetry; 2006; 120(1-4):307-11. PubMed ID: 16822776
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pre- and post-irradiation fading of 6LiF:Mg,Ti (TLD-600) exposed to thermal neutrons.
    Vainblat N; German U; Weinstein M; Alfassi ZB
    Radiat Prot Dosimetry; 2007; 126(1-4):318-21. PubMed ID: 17496295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A method to minimise the fading effects of LiF:Mg,Ti (TLD-600 and TLD-700) using a pre-heat technique.
    Lee Y; Won Y; Kang K
    Radiat Prot Dosimetry; 2015 Apr; 164(3):449-55. PubMed ID: 25301971
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of the energy-response factor of LiF and Al2O3 in radiotherapy beams.
    Mobit P; Agyingi E; Sandison G
    Radiat Prot Dosimetry; 2006; 119(1-4):497-9. PubMed ID: 16735558
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The use of enriched 6Li and 7Li Lif:Mg,Cu,P glass-rod thermoluminescent dosemeters for linear accelerator out-of-field radiation dose measurements.
    Takam R; Bezak E; Liu G; Marcu L
    Radiat Prot Dosimetry; 2012 Jun; 150(1):22-33. PubMed ID: 21873634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A TLD-based personal dosemeter system for aircrew monitoring.
    Hajek M; Berger T; Vana N
    Radiat Prot Dosimetry; 2004; 110(1-4):337-41. PubMed ID: 15353670
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pre- and post-irradiation fading effect for LiF:Mg,Ti and LiF:Mg,Cu,P materials used in routine monitoring.
    Carinou E; Askounis P; Dimitropoulou F; Kiranos G; Kyrgiakou H; Nirgianaki E; Papadomarkaki E; Kamenopoulou V
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):207-10. PubMed ID: 21199822
    [TBL] [Abstract][Full Text] [Related]  

  • 53. UV-induced bleaching of deep traps in Harshaw TLD LiF:Mg,Cu,P and LiF:Mg,Ti.
    Benevides L; Voss S; Nita I; Rotunda J; Velbeck K; Luo LZ; Moscovitch M
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):199-201. PubMed ID: 21310735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of ionisation density on the glow curve structure of LiF:Mg,Ti (TLD-100): the behaviour of composite glow peak 5 in 'slow-cooled' material.
    Fuks E; Horowitz Y; Oster L; Belaish Y; Shahar BB
    Radiat Prot Dosimetry; 2007; 126(1-4):194-7. PubMed ID: 17562651
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A personal thermoluminescence dosimeter using LiF:Mg,Cu,Na,Si detectors for photon fields.
    Jung H; Lee KJ; Kim JL
    Appl Radiat Isot; 2003 Jul; 59(1):87-93. PubMed ID: 12878128
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Response of LiF:Mg,Ti to low energy carbon and oxygen ions.
    Rodríguez-Villafuerte M; Avila O; Buenfil AE; Gamboa-deBuen I; Ruiz CG; Brandan ME
    Radiat Prot Dosimetry; 2006; 119(1-4):106-10. PubMed ID: 16698969
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Angular and radial dependence of the energy response factor for LIF-TLD micro-rods in 125L permanent implant source.
    Mobit P; Badragan I
    Radiat Prot Dosimetry; 2006; 120(1-4):70-3. PubMed ID: 16782977
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermoluminescent detectors applied in individual monitoring of radiation workers in Europe--a review based on the EURADOS questionnaire.
    Olko P; Currivan L; van Dijk JW; Lopez MA; Wernli C
    Radiat Prot Dosimetry; 2006; 120(1-4):298-302. PubMed ID: 16581929
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance of different thermoluminescence dosimeters in 90SR+90Y radiation fields.
    Oliveira ML; Caldas LV
    Radiat Prot Dosimetry; 2004; 111(1):17-20. PubMed ID: 15367762
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of spectrally resolved thermoluminescence of LiF:Mg,Cu,P detectors by the surface fitting method using algorithm for unrestricted peak positions.
    Mandowska E; Mandowski A; Bilski P; Swiatek J
    Radiat Prot Dosimetry; 2006; 119(1-4):89-92. PubMed ID: 16614088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.