BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16645632)

  • 61. The MEK/ERK cascade: from signaling specificity to diverse functions.
    Shaul YD; Seger R
    Biochim Biophys Acta; 2007 Aug; 1773(8):1213-26. PubMed ID: 17112607
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The molecular perspective: the ras oncogene.
    Goodsell DS
    Stem Cells; 1999; 17(4):235-6. PubMed ID: 10437988
    [No Abstract]   [Full Text] [Related]  

  • 63. Cancer signaling: when phosphorylation meets methylation.
    Ying H; DePinho RA
    Cell Res; 2014 Nov; 24(11):1282-3. PubMed ID: 25104733
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Stress-responsive MAP kinases].
    Takekawa M; Tatebayashi K; Saito H
    Tanpakushitsu Kakusan Koso; 2002 Sep; 47(11):1379-89. PubMed ID: 12229205
    [No Abstract]   [Full Text] [Related]  

  • 65. New insights into oncogenic stress.
    Haigis KM; Sweet-Cordero A
    Nat Genet; 2011 Mar; 43(3):177-8. PubMed ID: 21350495
    [TBL] [Abstract][Full Text] [Related]  

  • 66. REDD1, a new Ras oncogenic effector.
    Smith ER; Xu XX
    Cell Cycle; 2009 Mar; 8(5):675-6. PubMed ID: 19242117
    [No Abstract]   [Full Text] [Related]  

  • 67. Cancer biology: Enzyme meets a surprise target.
    Deuker MM; McMahon M
    Nature; 2014 Jun; 510(7504):225-6. PubMed ID: 24847879
    [No Abstract]   [Full Text] [Related]  

  • 68. Ras and p53: An unsuspected liaison.
    Drosten M; Barbacid M
    Mol Cell Oncol; 2016 Mar; 3(2):e996001. PubMed ID: 27308624
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structural keys unlock RAS-MAPK cellular signalling pathway.
    Lavoie H; Therrien M
    Nature; 2022 Sep; 609(7926):248-249. PubMed ID: 35970881
    [No Abstract]   [Full Text] [Related]  

  • 70. Author Correction: An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-κB.
    Min J; Zaslavsky A; Fedele G; McLaughlin SK; Reczek EE; De Raedt T; Guney I; Strochlic DE; MacConaill LE; Beroukhim R; Bronson RT; Ryeom S; Hahn WC; Loda M; Cichowski K
    Nat Med; 2024 Jun; 30(6):1790. PubMed ID: 38383797
    [No Abstract]   [Full Text] [Related]  

  • 71. GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation.
    Velletri T; Romeo F; Tucci P; Peschiaroli A; Annicchiarico-Petruzzelli M; Niklison-Chirou M; Amelio I; Knight R; Mak T; Melino G; Agostini M
    Cell Cycle; 2015; 14(10):1611-2. PubMed ID: 25997017
    [No Abstract]   [Full Text] [Related]  

  • 72. The Metabolic Landscape of RAS-Driven Cancers from biology to therapy.
    Mukhopadhyay S; Vander Heiden MG; McCormick F
    Nat Cancer; 2021 Mar; 2(3):271-283. PubMed ID: 33870211
    [TBL] [Abstract][Full Text] [Related]  

  • 73. p73 regulates ependymal planar cell polarity by modulating actin and microtubule cytoskeleton.
    Fuertes-Alvarez S; Maeso-Alonso L; Villoch-Fernandez J; Wildung M; Martin-Lopez M; Marshall C; Villena-Cortes AJ; Diez-Prieto I; Pietenpol JA; Tissir F; Lizé M; Marques MM; Marin MC
    Cell Death Dis; 2018 Dec; 9(12):1183. PubMed ID: 30518789
    [TBL] [Abstract][Full Text] [Related]  

  • 74. p73 is required for appropriate BMP-induced mesenchymal-to-epithelial transition during somatic cell reprogramming.
    Martin-Lopez M; Maeso-Alonso L; Fuertes-Alvarez S; Balboa D; Rodríguez-Cortez V; Weltner J; Diez-Prieto I; Davis A; Wu Y; Otonkoski T; Flores ER; Menéndez P; Marques MM; Marin MC
    Cell Death Dis; 2017 Sep; 8(9):e3034. PubMed ID: 28880267
    [TBL] [Abstract][Full Text] [Related]  

  • 75. ∆Np73 is capable of inducing apoptosis by co-ordinately activating several BH3-only proteins.
    Sánchez-Carrera D; García-Puga M; Yáñez L; Romón Í; Pipaón C
    Biosci Rep; 2015 Apr; 35(3):. PubMed ID: 26182360
    [TBL] [Abstract][Full Text] [Related]  

  • 76. p73 is required for endothelial cell differentiation, migration and the formation of vascular networks regulating VEGF and TGFβ signaling.
    Fernandez-Alonso R; Martin-Lopez M; Gonzalez-Cano L; Garcia S; Castrillo F; Diez-Prieto I; Fernandez-Corona A; Lorenzo-Marcos ME; Li X; Claesson-Welsh L; Marques MM; Marin MC
    Cell Death Differ; 2015 Aug; 22(8):1287-99. PubMed ID: 25571973
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transcription addiction: can we garner the Yin and Yang functions of E2F1 for cancer therapy?
    Meng P; Ghosh R
    Cell Death Dis; 2014 Aug; 5(8):e1360. PubMed ID: 25101673
    [TBL] [Abstract][Full Text] [Related]  

  • 78. SOX2 promotes dedifferentiation and imparts stem cell-like features to pancreatic cancer cells.
    Herreros-Villanueva M; Zhang JS; Koenig A; Abel EV; Smyrk TC; Bamlet WR; de Narvajas AA; Gomez TS; Simeone DM; Bujanda L; Billadeau DD
    Oncogenesis; 2013 Aug; 2(8):e61. PubMed ID: 23917223
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Regulatory feedback loop between TP73 and TRIM32.
    Gonzalez-Cano L; Hillje AL; Fuertes-Alvarez S; Marques MM; Blanch A; Ian RW; Irwin MS; Schwamborn JC; Marín MC
    Cell Death Dis; 2013 Jul; 4(7):e704. PubMed ID: 23828567
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of connective tissue growth factor on protein kinase expression and activity in human corneal fibroblasts.
    Radhakrishnan SS; Blalock TD; Robinson PM; Secker G; Daniels J; Grotendorst GR; Schultz GS
    Invest Ophthalmol Vis Sci; 2012 Dec; 53(13):8076-85. PubMed ID: 23139271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.