These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 16645813)

  • 21. Direct identification of NH...N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy.
    Wöhnert J; Dingley AJ; Stoldt M; Görlach M; Grzesiek S; Brown LR
    Nucleic Acids Res; 1999 Aug; 27(15):3104-10. PubMed ID: 10454606
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Trans-hydrogen-bond (h2)J(NN) and (h1)J(NH) couplings in the DNA A-T base pair: natural bond orbital analysis.
    Wilkens SJ; Westler WM; Weinhold F; Markley JL
    J Am Chem Soc; 2002 Feb; 124(7):1190-1. PubMed ID: 11841286
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the hydrogen bond energy of base pairs formed between substituted 9-methyladenine derivatives and 1-methyluracil by use of molecular orbital theory.
    Kawahara S; Taira K; Sekine M; Uchimaru T
    Nucleic Acids Symp Ser; 2000; (44):237-8. PubMed ID: 12903356
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of [(MeCyt)2H]I-structure and stability of a dimeric threefold hydrogen-bonded 1-methylcytosinium 1-methylcytosine cation.
    Krüger T; Bruhn C; Steinborn D
    Org Biomol Chem; 2004 Sep; 2(17):2513-6. PubMed ID: 15326532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X; McDowell JA; Kierzek R; Krugh TR; Turner DH
    Biochemistry; 2000 Aug; 39(30):8970-82. PubMed ID: 10913310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The physicochemical essence of the purine·pyrimidine transition mismatches with Watson-Crick geometry in DNA: A·C* versa A*·C. A QM and QTAIM atomistic understanding.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(1):28-55. PubMed ID: 24261751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogen bond detection.
    Thar J; Kirchner B
    J Phys Chem A; 2006 Mar; 110(12):4229-37. PubMed ID: 16553374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogen bond vibrations of 2-aminopyridine.2-pyridone, a Watson-Crick analogue of adenine.uracil.
    Müller A; Talbot F; Leutwyler S
    J Am Chem Soc; 2002 Dec; 124(48):14486-94. PubMed ID: 12452726
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantum chemical studies of structures and binding in noncanonical RNA base pairs: the trans Watson-Crick:Watson-Crick family.
    Sharma P; Mitra A; Sharma S; Singh H; Bhattacharyya D
    J Biomol Struct Dyn; 2008 Jun; 25(6):709-32. PubMed ID: 18399704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Can modified DNA base pairs with chalcogen bonding expand the genetic alphabet? A combined quantum chemical and molecular dynamics simulation study.
    Sharma KD; Kathuria P; Wetmore SD; Sharma P
    Phys Chem Chem Phys; 2020 Nov; 22(41):23754-23765. PubMed ID: 33063082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bifacial nucleoside as a surrogate for both T and A in duplex DNA.
    Shin D; Tor Y
    J Am Chem Soc; 2011 May; 133(18):6926-9. PubMed ID: 21495708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intramolecular CH···O hydrogen bonds in the AI and BI DNA-like conformers of canonical nucleosides and their Watson-Crick pairs. Quantum chemical and AIM analysis.
    Yurenko YP; Zhurakivsky RO; Samijlenko SP; Hovorun DM
    J Biomol Struct Dyn; 2011 Aug; 29(1):51-65. PubMed ID: 21696225
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mutual Relations between Substituent Effect, Hydrogen Bonding, and Aromaticity in Adenine-Uracil and Adenine-Adenine Base Pairs.
    Wieczorkiewicz PA; Szatylowicz H; Krygowski TM
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32823565
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct NMR Evidence that Transient Tautomeric and Anionic States in dG·dT Form Watson-Crick-like Base Pairs.
    Szymanski ES; Kimsey IJ; Al-Hashimi HM
    J Am Chem Soc; 2017 Mar; 139(12):4326-4329. PubMed ID: 28290687
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Low-temperature NMR studies on inosine wobble base pairs.
    Janke EM; Riechert-Krause F; Weisz K
    J Phys Chem B; 2011 Jul; 115(26):8569-74. PubMed ID: 21644523
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deuterium isotope effects in A:T and A:U base pairs: a computational NMR study.
    Vidossich P; Piana S; Miani A; Carloni P
    J Am Chem Soc; 2006 Jun; 128(22):7215-21. PubMed ID: 16734475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis.
    Brovarets' OO; Hovorun DM
    J Biomol Struct Dyn; 2013; 31(8):913-36. PubMed ID: 22962845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Atomistic understanding of the C·T mismatched DNA base pair tautomerization via the DPT: QM and QTAIM computational approaches.
    Brovarets' OO; Hovorun DM
    J Comput Chem; 2013 Nov; 34(30):2577-90. PubMed ID: 23955922
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomic structures of excited state A-T Hoogsteen base pairs in duplex DNA by combining NMR relaxation dispersion, mutagenesis, and chemical shift calculations.
    Shi H; Clay MC; Rangadurai A; Sathyamoorthy B; Case DA; Al-Hashimi HM
    J Biomol NMR; 2018 Apr; 70(4):229-244. PubMed ID: 29675775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.