BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 16645861)

  • 1. Compound subretinal prostheses with extra-ocular parts designed for human trials: successful long-term implantation in pigs.
    Gekeler F; Szurman P; Grisanti S; Weiler U; Claus R; Greiner TO; Völker M; Kohler K; Zrenner E; Bartz-Schmidt KU
    Graefes Arch Clin Exp Ophthalmol; 2007 Feb; 245(2):230-41. PubMed ID: 16645861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T; Sachs HG; Wiesenack C; Brunner U; Sailer H
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subretinal implantation and testing of polyimide film electrodes in cats.
    Sachs HG; Schanze T; Wilms M; Rentzos A; Brunner U; Gekeler F; Hesse L
    Graefes Arch Clin Exp Ophthalmol; 2005 May; 243(5):464-8. PubMed ID: 15578200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implantation of ultrathin, biofunctionalized polyimide membranes into the subretinal space of rats.
    Julien S; Peters T; Ziemssen F; Arango-Gonzalez B; Beck S; Thielecke H; Büth H; Van Vlierberghe S; Sirova M; Rossmann P; Rihova B; Schacht E; Dubruel P; Zrenner E; Schraermeyer U
    Biomaterials; 2011 Jun; 32(16):3890-8. PubMed ID: 21388675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit.
    Schwahn HN; Gekeler F; Kohler K; Kobuch K; Sachs HG; Schulmeyer F; Jakob W; Gabel VP; Zrenner E
    Graefes Arch Clin Exp Ophthalmol; 2001 Dec; 239(12):961-7. PubMed ID: 11820703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo assessment of subretinally implanted microphotodiode arrays in cats by optical coherence tomography and fluorescein angiography.
    Völker M; Shinoda K; Sachs H; Gmeiner H; Schwarz T; Kohler K; Inhoffen W; Bartz-Schmidt KU; Zrenner E; Gekeler F
    Graefes Arch Clin Exp Ophthalmol; 2004 Sep; 242(9):792-9. PubMed ID: 15179515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Status of the subretinal implant project. An overview].
    Gekeler F; Zrenner E
    Ophthalmologe; 2005 Oct; 102(10):941-9. PubMed ID: 16151772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients.
    Besch D; Sachs H; Szurman P; Gülicher D; Wilke R; Reinert S; Zrenner E; Bartz-Schmidt KU; Gekeler F
    Br J Ophthalmol; 2008 Oct; 92(10):1361-8. PubMed ID: 18662916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of thermal effects of infrared lasers on the rabbit retina: a study in the course of development of an active subretinal prosthesis.
    Sailer H; Shinoda K; Blatsios G; Kohler K; Bondzio L; Zrenner E; Gekeler F
    Graefes Arch Clin Exp Ophthalmol; 2007 Aug; 245(8):1169-78. PubMed ID: 17219111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeated transchoroidal implantation and explantation of compound subretinal prostheses: an exploratory study in rabbits.
    Gekeler F; Kobuch K; Blatsios G; Zrenner E; Shinoda K
    Jpn J Ophthalmol; 2010 Sep; 54(5):467-75. PubMed ID: 21052911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subretinal electrical stimulation of the rabbit retina with acutely implanted electrode arrays.
    Gekeler F; Kobuch K; Schwahn HN; Stett A; Shinoda K; Zrenner E
    Graefes Arch Clin Exp Ophthalmol; 2004 Jul; 242(7):587-96. PubMed ID: 15197555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs.
    Chow AY; Pardue MT; Perlman JI; Ball SL; Chow VY; Hetling JR; Peyman GA; Liang C; Stubbs EB; Peachey NS
    J Rehabil Res Dev; 2002; 39(3):313-21. PubMed ID: 12173752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development.
    Sachs HG; Gekeler F; Schwahn H; Jakob W; Köhler M; Schulmeyer F; Marienhagen J; Brunner U; Framme C
    Eur J Ophthalmol; 2005; 15(4):493-9. PubMed ID: 16001384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach towards a minimal invasive retina implant.
    Gerding H
    J Neural Eng; 2007 Mar; 4(1):S30-7. PubMed ID: 17325414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implantation of Modular Photovoltaic Subretinal Prosthesis.
    Lee DY; Lorach H; Huie P; Palanker D
    Ophthalmic Surg Lasers Imaging Retina; 2016 Feb; 47(2):171-4. PubMed ID: 26878451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implantation and explantation of a wireless epiretinal retina implant device: observations during the EPIRET3 prospective clinical trial.
    Roessler G; Laube T; Brockmann C; Kirschkamp T; Mazinani B; Goertz M; Koch C; Krisch I; Sellhaus B; Trieu HK; Weis J; Bornfeld N; Röthgen H; Messner A; Mokwa W; Walter P
    Invest Ophthalmol Vis Sci; 2009 Jun; 50(6):3003-8. PubMed ID: 19420330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotective effect of subretinal implants in the RCS rat.
    Pardue MT; Phillips MJ; Yin H; Sippy BD; Webb-Wood S; Chow AY; Ball SL
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):674-82. PubMed ID: 15671299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Innovative Surgical Technique for Subretinal Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigmented Epithelium in Yucatan Mini Pigs: Preliminary Results.
    Brant Fernandes RA; Koss MJ; Falabella P; Stefanini FR; Maia M; Diniz B; Ribeiro R; Hu Y; Hinton D; Clegg DO; Chader G; Humayun MS
    Ophthalmic Surg Lasers Imaging Retina; 2016 Apr; 47(4):342-51. PubMed ID: 27065374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.