BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 16646000)

  • 1. Non-enzymatic model glycation reactions--a comprehensive study of the reactivity of a modified arginine with aldehydic and diketonic dicarbonyl compounds by electrospray mass spectrometry.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Jun; 41(6):755-70. PubMed ID: 16646000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards the control and inhibition of glycation-the role of the guanidine reaction center with aldehydic and diketonic dicarbonyls. A mass spectrometry study.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Oct; 41(10):1346-68. PubMed ID: 17039581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactions of a modified lysine with aldehydic and diketonic dicarbonyl compounds: an electrospray mass spectrometry structure/activity study.
    Saraiva MA; Borges CM; Florêncio MH
    J Mass Spectrom; 2006 Feb; 41(2):216-28. PubMed ID: 16421861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mass spectrometric studies of the reaction of a blocked arginine with diketonic α-dicarbonyls.
    Saraiva MA; Borges CM; Helena Florêncio M
    Amino Acids; 2016 Mar; 48(3):873-885. PubMed ID: 26592498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-Terminal pyrazinones: a new class of peptide-bound advanced glycation end-products.
    Krause R; Kühn J; Penndorf I; Knoll K; Henle T
    Amino Acids; 2004 Aug; 27(1):9-18. PubMed ID: 15309567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific tandem mass spectrometric detection of AGE-modified arginine residues in peptides.
    Schmidt R; Böhme D; Singer D; Frolov A
    J Mass Spectrom; 2015 Mar; 50(3):613-24. PubMed ID: 25800199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein modification by methylglyoxal: chemical nature and synthetic mechanism of a major fluorescent adduct.
    Shipanova IN; Glomb MA; Nagaraj RH
    Arch Biochem Biophys; 1997 Aug; 344(1):29-36. PubMed ID: 9244378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific quantitative evaluation of the protein glycation product N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysinate by LC-(ESI)MS peptide mapping: evidence for its key role in AGE formation.
    Biemel KM; Lederer MO
    Bioconjug Chem; 2003; 14(3):619-28. PubMed ID: 12757388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dicarbonyl intermediates in the maillard reaction.
    Thornalley PJ
    Ann N Y Acad Sci; 2005 Jun; 1043():111-7. PubMed ID: 16037229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the formation of adducts and S-(carboxymethyl)cysteine on reaction of alpha-dicarbonyl compounds with thiol groups on amino acids, peptides, and proteins.
    Zeng J; Davies MJ
    Chem Res Toxicol; 2005 Aug; 18(8):1232-41. PubMed ID: 16097796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase in three alpha,beta-dicarbonyl compound levels in human uremic plasma: specific in vivo determination of intermediates in advanced Maillard reaction.
    Odani H; Shinzato T; Matsumoto Y; Usami J; Maeda K
    Biochem Biophys Res Commun; 1999 Mar; 256(1):89-93. PubMed ID: 10066428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of mass spectrometry in the study of non-enzymatic protein glycation in diabetes: an update.
    Lapolla A; Fedele D; Seraglia R; Traldi P
    Mass Spectrom Rev; 2006; 25(5):775-97. PubMed ID: 16625652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and identification of arginine modifications on methylglyoxal-modified ribonuclease by mass spectrometric analysis.
    Brock JW; Cotham WE; Thorpe SR; Baynes JW; Ames JM
    J Mass Spectrom; 2007 Jan; 42(1):89-100. PubMed ID: 17143934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of arginine modifications in a model system of Nα-tert-butoxycarbonyl (Boc)-arginine with methylglyoxal.
    Klöpfer A; Spanneberg R; Glomb MA
    J Agric Food Chem; 2011 Jan; 59(1):394-401. PubMed ID: 21126021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of dicarbonyl-induced browning on alpha-crystallin chaperone-like activity: physiological significance and caveats of in vitro aggregation assays.
    Kumar MS; Reddy PY; Kumar PA; Surolia I; Reddy GB
    Biochem J; 2004 Apr; 379(Pt 2):273-82. PubMed ID: 14711370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The other side of the Maillard reaction.
    Nagaraj RH; Biswas A; Miller A; Oya-Ito T; Bhat M
    Ann N Y Acad Sci; 2008 Apr; 1126():107-12. PubMed ID: 18448802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of protein glycation products by MALDI-TOF/MS.
    Kislinger T; Humeny A; Peich CC; Becker CM; Pischetsrieder M
    Ann N Y Acad Sci; 2005 Jun; 1043():249-59. PubMed ID: 16037245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The early glycation products of the Maillard reaction: mass spectrometric characterization of novel imidazolidinones derived from an opioid pentapeptide and glucose.
    Roscić M; Versluis C; Kleinnijenhuis AJ; Horvat S; Heck AJ
    Rapid Commun Mass Spectrom; 2001; 15(12):1022-9. PubMed ID: 11400213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas-phase fragmentation study of novel synthetic 1,5-benzodiazepine derivatives using electrospray ionization tandem mass spectrometry.
    Rida M; El Meslouhi H; Es-Safi NE; Essassi el M; Banoub J
    Rapid Commun Mass Spectrom; 2008 Jul; 22(14):2253-68. PubMed ID: 18561279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific synthesis of Amadori-modified peptides on solid phase.
    Frolov A; Singer D; Hoffmann R
    J Pept Sci; 2006 Jun; 12(6):389-95. PubMed ID: 16342332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.