These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 16646467)

  • 1. Simulating the effect of aerobic biodegradation on soil vapor intrusion into buildings: influence of degradation rate, source concentration, and depth.
    Abreu LD; Johnson PC
    Environ Sci Technol; 2006 Apr; 40(7):2304-15. PubMed ID: 16646467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of vapor source-building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model.
    Abreu LD; Johnson PC
    Environ Sci Technol; 2005 Jun; 39(12):4550-61. PubMed ID: 16047792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the source to building lateral separation distance in petroleum vapor intrusion.
    Verginelli I; Capobianco O; Baciocchi R
    J Contam Hydrol; 2016 Jun; 189():58-67. PubMed ID: 27116639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Indoor vapor intrusion with oxygen-limited biodegradation for a subsurface gasoline source.
    DeVaull GE
    Environ Sci Technol; 2007 May; 41(9):3241-8. PubMed ID: 17539532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination.
    Yao Y; Mao F; Xiao Y; Luo J
    Water Res; 2019 Mar; 150():111-119. PubMed ID: 30508708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation.
    Verginelli I; Baciocchi R
    J Contam Hydrol; 2011 Nov; 126(3-4):167-80. PubMed ID: 22115083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment.
    Verginelli I; Yao Y; Wang Y; Ma J; Suuberg EM
    J Hazard Mater; 2016 Jul; 312():84-96. PubMed ID: 27016669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity and uncertainty analysis for Abreu & Johnson numerical vapor intrusion model.
    Ma J; Yan G; Li H; Guo S
    J Hazard Mater; 2016 Mar; 304():522-31. PubMed ID: 26619051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal moisture content variability beneath and external to a building and the potential effects on vapor intrusion risk assessment.
    Tillman FD; Weaver JW
    Sci Total Environ; 2007 Jun; 379(1):1-15. PubMed ID: 17442380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximate analytical model for transient transport and oxygen-limited biodegradation of vapor-phase petroleum hydrocarbon compound in soil.
    Zhu ZW; Feng SJ; Chen HX; Chen ZL; Ding XH; Peng CH
    Chemosphere; 2022 Aug; 300():134522. PubMed ID: 35395265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen transport from the atmosphere to soil gas beneath a slab-on-grade foundation overlying petroleum-impacted soil.
    Lundegard PD; Johnson PC; Dahlen P
    Environ Sci Technol; 2008 Aug; 42(15):5534-40. PubMed ID: 18754472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proof-of-concept study of an aerobic vapor migration barrier beneath a building at a petroleum hydrocarbon-impacted site.
    Luo H; Dahlen PR; Johnson PC; Peargin T
    Environ Sci Technol; 2013 Feb; 47(4):1977-84. PubMed ID: 23346904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical investigation of oxygen concentration dependence on biodegradation rate laws in vapor intrusion.
    Yao Y; Shen R; Pennel KG; Suuberg EM
    Environ Sci Process Impacts; 2013 Dec; 15(12):2345-54. PubMed ID: 24197079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical model investigation for potential methane explosion and benzene vapor intrusion associated with high-ethanol blend releases.
    Ma J; Luo H; Devaull GE; Rixey WG; Alvarez PJ
    Environ Sci Technol; 2014; 48(1):474-81. PubMed ID: 24354291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Rate-Limited Mass Transfer on Modeling Vapor Intrusion with Aerobic Biodegradation.
    Chen Y; Hou D; Lu C; Spain JC; Luo J
    Environ Sci Technol; 2016 Sep; 50(17):9400-6. PubMed ID: 27486832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).
    Ma J; Li H; Spiese R; Wilson J; Yan G; Guo S
    Environ Pollut; 2016 Jun; 213():825-832. PubMed ID: 27038569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of contaminant subslab concentration in petroleum vapor intrusion.
    Yao Y; Yang F; Suuberg EM; Provoost J; Liu W
    J Hazard Mater; 2014 Aug; 279():336-47. PubMed ID: 25124892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the role of sub-foundation soil texture in chlorinated vapor intrusion from groundwater sources with a two-layer numerical model.
    Yao Y; Xiao Y; Mao F; Chen H; Verginelli I
    J Hazard Mater; 2018 Oct; 359():544-553. PubMed ID: 30096605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of vapor intrusion pathways into a slab-on-ground building under varying environmental conditions.
    Patterson BM; Davis GB
    Environ Sci Technol; 2009 Feb; 43(3):650-6. PubMed ID: 19244997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-dimensional analytical model of petroleum vapor intrusion.
    Yao Y; Verginelli I; Suuberg EM
    Water Resour Res; 2016 Feb; 52(2):1528-1539. PubMed ID: 28255184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.