BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 16646527)

  • 1. Synthesis of soluble heat shock proteins in seminal root tissues of some cultivated and wild wheat genotypes.
    Yildiz M; Terz Oglu S
    Acta Biol Hung; 2006 Mar; 57(1):81-95. PubMed ID: 16646527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock of cultivated and wild wheats during early seedling stage: growth, cell viability and heat shock proteins.
    Yildizi M; Terzioglu S
    Acta Biol Hung; 2006 Jun; 57(2):231-46. PubMed ID: 16841474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Varying patterns of protein synthesis in bread wheat during heat shock.
    Efeoglu B; Terzioglu S
    Acta Biol Hung; 2007 Mar; 58(1):93-104. PubMed ID: 17385547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of heat shock protein synthesis in murine tumors during the development of thermotolerance.
    Li GC; Mak JY
    Cancer Res; 1985 Aug; 45(8):3816-24. PubMed ID: 4016752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection of Chinese hamster ovary cells from heat killing by treatment with cycloheximide or puromycin: involvement of HSPs?
    Lee YJ; Dewey WC; Li GC
    Radiat Res; 1987 Aug; 111(2):237-53. PubMed ID: 3628714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of proteins in aerenchymatous seminal roots of wheat grown in hypoxic soils under waterlogged conditions.
    Haque ME; Kawaguchiand K; Komatsu S
    Protein Pept Lett; 2011 Sep; 18(9):912-24. PubMed ID: 21443497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Induction of heat shock proteins in Chinese hamster ovary cells and development of thermotolerance by intermediate concentrations of puromycin.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):1-11. PubMed ID: 3597546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A screening method to identify genetic variation in root growth response to a salinity gradient.
    Rahnama A; Munns R; Poustini K; Watt M
    J Exp Bot; 2011 Jan; 62(1):69-77. PubMed ID: 21118825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in specific and general protein synthesis after heat shock in heat-sensitive mutants of CHO cells and their wild-type counterparts.
    Harvey WF; Bedford JS; Li GC
    Radiat Res; 1990 Oct; 124(1 Suppl):S88-97. PubMed ID: 2236516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of cycloheximide or puromycin on induction of thermotolerance by sodium arsenite in Chinese hamster ovary cells: involvement of heat shock proteins.
    Lee YJ; Dewey WC
    J Cell Physiol; 1987 Jul; 132(1):41-8. PubMed ID: 3597553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional gel analysis of the heat-shock response in marine snails (genus Tegula): interspecific variation in protein expression and acclimation ability.
    Tomanek L
    J Exp Biol; 2005 Aug; 208(Pt 16):3133-43. PubMed ID: 16081611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein.
    Law RD; Crafts-Brandner SJ
    Arch Biochem Biophys; 2001 Feb; 386(2):261-7. PubMed ID: 11368350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of novel heat-responsive transcription factor (TaHSFA6e) gene involved in regulation of heat shock proteins (HSPs) - A key member of heat stress-tolerance network of wheat.
    Kumar RR; Goswami S; Singh K; Dubey K; Rai GK; Singh B; Singh S; Grover M; Mishra D; Kumar S; Bakshi S; Rai A; Pathak H; Chinnusamy V; Praveen S
    J Biotechnol; 2018 Aug; 279():1-12. PubMed ID: 29746879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermotolerance and the heat-shock response in Candida albicans.
    Zeuthen ML; Howard DH
    J Gen Microbiol; 1989 Sep; 135(9):2509-18. PubMed ID: 2697750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene expression during cold and heat shock in wheat.
    Danyluk J; Rassart E; Sarhan F
    Biochem Cell Biol; 1991; 69(5-6):383-91. PubMed ID: 1910736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of differentially expressed stress-associated proteins in starch granule development under heat stress in wheat (Triticum aestivum L.).
    Kumar RR; Sharma SK; Goswami S; Singh GP; Singh R; Singh K; Pathak H; Rai RD
    Indian J Biochem Biophys; 2013 Apr; 50(2):126-38. PubMed ID: 23720887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of seminal root primordia during wheat domestication reveals underlying mechanisms of plant resilience.
    Golan G; Hendel E; Méndez Espitia GE; Schwartz N; Peleg Z
    Plant Cell Environ; 2018 Apr; 41(4):755-766. PubMed ID: 29320605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the heat-responsive chaperones and microsatellite markers associated with terminal heat stress tolerance in developing wheat.
    Kumar RR; Goswami S; Shamim M; Dubey K; Singh K; Singh S; Kala YK; Niraj RRK; Sakhrey A; Singh GP; Grover M; Singh B; Rai GK; Rai AK; Chinnusamy V; Praveen S
    Funct Integr Genomics; 2017 Nov; 17(6):621-640. PubMed ID: 28573536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genotypic variation and covariation in wheat seedling seminal root architecture and grain yield under field conditions.
    Rebetzke GJ; Zhang H; Ingvordsen CH; Condon AG; Rich SM; Ellis MH
    Theor Appl Genet; 2022 Sep; 135(9):3247-3264. PubMed ID: 35925366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and physical influence of sodic soils on the coleoptile length and root growth angle of wheat genotypes.
    Anzooman M; Christopher J; Dang YP; Taylor J; Menzies NW; Kopittke PM
    Ann Bot; 2019 Nov; 124(6):1043-1052. PubMed ID: 31175829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.