BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 16646954)

  • 1. Structural dissection of the reaction mechanism of cellobiose phosphorylase.
    Hidaka M; Kitaoka M; Hayashi K; Wakagi T; Shoun H; Fushinobu S
    Biochem J; 2006 Aug; 398(1):37-43. PubMed ID: 16646954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
    Nakai H; Hachem MA; Petersen BO; Westphal Y; Mannerstedt K; Baumann MJ; Dilokpimol A; Schols HA; Duus JØ; Svensson B
    Biochimie; 2010 Dec; 92(12):1818-26. PubMed ID: 20678539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational analyses of the conformational itinerary along the reaction pathway of GH94 cellobiose phosphorylase.
    Fushinobu S; Mertz B; Hill AD; Hidaka M; Kitaoka M; Reilly PJ
    Carbohydr Res; 2008 May; 343(6):1023-33. PubMed ID: 18346721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate.
    Bianchetti CM; Elsen NL; Fox BG; Phillips GN
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Nov; 67(Pt 11):1345-9. PubMed ID: 22102229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic reaction of Cellvibrio gilvus cellobiose phosphorylase.
    Kitaoka M; Sasaki T; Taniguchi H
    J Biochem; 1992 Jul; 112(1):40-4. PubMed ID: 1429509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization and preliminary X-ray analysis of cellobiose phosphorylase from Cellvibrio gilvus.
    Hidaka M; Kitaoka M; Hayashi K; Wakagi T; Shoun H; Fushinobu S
    Acta Crystallogr D Biol Crystallogr; 2004 Oct; 60(Pt 10):1877-8. PubMed ID: 15388938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of acceptor specificity of Ruminococcus albus cellobiose phosphorylase through site-directed mutagenesis.
    Hamura K; Saburi W; Matsui H; Mori H
    Carbohydr Res; 2013 Sep; 379():21-5. PubMed ID: 23845516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unravelling the Specificity of Laminaribiose Phosphorylase from Paenibacillus sp. YM-1 towards Donor Substrates Glucose/Mannose 1-Phosphate by Using X-ray Crystallography and Saturation Transfer Difference NMR Spectroscopy.
    Kuhaudomlarp S; Walpole S; Stevenson CEM; Nepogodiev SA; Lawson DM; Angulo J; Field RA
    Chembiochem; 2019 Jan; 20(2):181-192. PubMed ID: 29856496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Ruminococcus albus cellodextrin phosphorylase and identification of a key phenylalanine residue for acceptor specificity and affinity to the phosphate group.
    Sawano T; Saburi W; Hamura K; Matsui H; Mori H
    FEBS J; 2013 Sep; 280(18):4463-73. PubMed ID: 23802549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (alpha/alpha)(6) barrel fold.
    Hidaka M; Honda Y; Kitaoka M; Nirasawa S; Hayashi K; Wakagi T; Shoun H; Fushinobu S
    Structure; 2004 Jun; 12(6):937-47. PubMed ID: 15274915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystallization and X-ray diffraction studies of cellobiose phosphorylase from Cellulomonas uda.
    Van Hoorebeke A; Stout J; Kyndt J; De Groeve M; Dix I; Desmet T; Soetaert W; Van Beeumen J; Savvides SN
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Mar; 66(Pt 3):346-51. PubMed ID: 20208178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Examining the role of phosphate in glycosyl transfer reactions of Cellulomonas uda cellobiose phosphorylase using D-glucal as donor substrate.
    Wildberger P; Brecker L; Nidetzky B
    Carbohydr Res; 2012 Jul; 356():224-32. PubMed ID: 22591555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction on D-glucal by an inverting phosphorylase to synthesize derivatives of 2-deoxy-beta-D-arabino-hexopyranosyl-(1-->4)-D-glucose (2II-deoxycellobiose).
    Kitaoka M; Nomura S; Yoshida M; Hayashi K
    Carbohydr Res; 2006 Mar; 341(4):545-9. PubMed ID: 16430877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies of a recombinant cellobiose phosphorylase (CBP) of the Clostridium thermocellum YM4 strain expressed in Escherichia coli.
    Kim YK; Kitaoka M; Krishnareddy M; Mori Y; Hayashi K
    J Biochem; 2002 Aug; 132(2):197-203. PubMed ID: 12153715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acceptor specificity of cellobiose phosphorylase from Cellvibrio gilvus: synthesis of three branched trisaccharides.
    Percy A; Ono H; Hayashi K
    Carbohydr Res; 1998 Jun; 308(3-4):423-9. PubMed ID: 9711833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellodextrin phosphorylase from Ruminiclostridium thermocellum: X-ray crystal structure and substrate specificity analysis.
    O'Neill EC; Pergolizzi G; Stevenson CEM; Lawson DM; Nepogodiev SA; Field RA
    Carbohydr Res; 2017 Nov; 451():118-132. PubMed ID: 28760417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional reassignment of Cellvibrio vulgaris EpiA to cellobiose 2-epimerase and an evaluation of the biochemical functions of the 4-O-β-D-mannosyl-D-glucose phosphorylase-like protein, UnkA.
    Saburi W; Tanaka Y; Muto H; Inoue S; Odaka R; Nishimoto M; Kitaoka M; Mori H
    Biosci Biotechnol Biochem; 2015; 79(6):969-77. PubMed ID: 25704402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of maltose phosphorylase from Lactobacillus brevis: unexpected evolutionary relationship with glucoamylases.
    Egloff MP; Uppenberg J; Haalck L; van Tilbeurgh H
    Structure; 2001 Aug; 9(8):689-97. PubMed ID: 11587643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate.
    Taguchi Y; Saburi W; Imai R; Mori H
    Biosci Biotechnol Biochem; 2017 Aug; 81(8):1512-1519. PubMed ID: 28537141
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic characteristics of cellobiose phosphorylase from Ruminococcus albus NE1 and kinetic mechanism of unusual substrate inhibition in reverse phosphorolysis.
    Hamura K; Saburi W; Abe S; Morimoto N; Taguchi H; Mori H; Matsui H
    Biosci Biotechnol Biochem; 2012; 76(4):812-8. PubMed ID: 22484959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.