These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16647101)

  • 1. Dissolution of resin acids, retene and wood sterols from contaminated lake sediments.
    Meriläinen P; Lahdelma I; Oikari L; Hyötyläinen T; Oikari A
    Chemosphere; 2006 Oct; 65(5):840-6. PubMed ID: 16647101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Betulinol and wood sterols in sediments contaminated by pulp and paper mill effluents: dissolution and spatial distribution.
    Ratia H; Rämänen H; Lensu A; Oikari A
    Environ Sci Pollut Res Int; 2013 Jul; 20(7):4562-73. PubMed ID: 23263757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioavailability to juvenile rainbow trout (Oncorynchus mykiss) of retene and other mixed-function oxygenase-active compounds from sediments.
    Oikari A; Fragoso N; Leppänen H; Chan T; Hodson PV
    Environ Toxicol Chem; 2002 Jan; 21(1):121-8. PubMed ID: 11804045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of resin acids and sterols from pulp mill effluents by activated sludge treatment.
    Kostamo A; Kukkonen JV
    Water Res; 2003 Jul; 37(12):2813-20. PubMed ID: 12767285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal release from bottom sediments of Ocoee Lake No. 3, a primary catchment area for the Ducktown Mining District.
    Lee G; Faure G; Bigham JM; Williams DJ
    J Environ Qual; 2008; 37(2):344-52. PubMed ID: 18268296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA.
    Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW
    Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mercury contamination in the vicinity of a derelict chlor-alkali plant. Part I: sediment and water contamination of Lake Balkyldak and the River Irtysh.
    Ullrich SM; Ilyushchenko MA; Kamberov IM; Tanton TW
    Sci Total Environ; 2007 Aug; 381(1-3):1-16. PubMed ID: 17475310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forensic differentiation of biogenic organic compounds from petroleum hydrocarbons in biogenic and petrogenic compounds cross-contaminated soils and sediments.
    Wang Z; Yang C; Kelly-Hooper F; Hollebone BP; Peng X; Brown CE; Landriault M; Sun J; Yang Z
    J Chromatogr A; 2009 Feb; 1216(7):1174-91. PubMed ID: 19131067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic mobility in contaminated lake sediments.
    Nikolaidis NP; Dobbs GM; Chen J; Lackovic JA
    Environ Pollut; 2004 Jun; 129(3):479-87. PubMed ID: 15016468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions.
    Chen W; Song L; Peng L; Wan N; Zhang X; Gan N
    Water Res; 2008 Feb; 42(3):763-73. PubMed ID: 17761208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake of organic xenobiotics by benthic invertebrates from sediment contaminated by the pulp and paper industry.
    Meriläinen P; Oikari A
    Water Res; 2008 Mar; 42(6-7):1715-25. PubMed ID: 17988707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of population genetic effects of long-term exposure to contaminated sediments-a multi-endpoint study with copepods.
    Gardeström J; Dahl U; Kotsalainen O; Maxson A; Elfwing T; Grahn M; Bengtsson BE; Breitholtz M
    Aquat Toxicol; 2008 Feb; 86(3):426-36. PubMed ID: 18234358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conditions affecting the release of phosphorus from surface lake sediments.
    Christophoridis C; Fytianos K
    J Environ Qual; 2006; 35(4):1181-92. PubMed ID: 16738404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating phenanthrene sorption on various wood chars.
    James G; Sabatini DA; Chiou CT; Rutherford D; Scott AC; Karapanagioti HK
    Water Res; 2005 Feb; 39(4):549-58. PubMed ID: 15707627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus release characteristics of different trophic lake sediments under simulative disturbing conditions.
    Wang S; Jin X; Zhao H; Wu F
    J Hazard Mater; 2009 Jan; 161(2-3):1551-9. PubMed ID: 18555597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood lead concentrations in waterfowl utilizing Lake Coeur d'Alene, Idaho.
    Spears BL; Hansen JA; Audet DJ
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):121-8. PubMed ID: 17082999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sterols as bio-markers for waste impact and source characterization in stream sediment.
    Ayebo A; Breuer GM; Cain TG; Wichman MD; Subramanian P; Reynolds SJ
    J Environ Health; 2006 Jun; 68(10):46-50. PubMed ID: 16780001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A whole sample toxicity assessment to evaluate the sub-lethal toxicity of water and sediment elutriates from a lake exposed to diffuse pollution.
    Abrantes N; Pereira R; de Figueiredo DR; Marques CR; Pereira MJ; Gonçalves F
    Environ Toxicol; 2009 Jun; 24(3):259-70. PubMed ID: 18655178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of a physico-chemical treatment of a dredged sediment on its ecotoxicity after discharge in laboratory gravel pit microcosms.
    Clément B; Vaille G; Moretto R; Vernus E; Abdelghafour M
    J Hazard Mater; 2010 Mar; 175(1-3):205-15. PubMed ID: 19879042
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.