BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 16647629)

  • 61. Angiotensin II induces renal oxidant stress in vivo and heme oxygenase-1 in vivo and in vitro.
    Haugen EN; Croatt AJ; Nath KA
    Kidney Int; 2000 Jul; 58(1):144-52. PubMed ID: 10886559
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Sexual dimorphism in urinary angiotensinogen excretion during chronic angiotensin II-salt hypertension.
    Rands VF; Seth DM; Kobori H; Prieto MC
    Gend Med; 2012 Aug; 9(4):207-18. PubMed ID: 22795463
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Development and reversibility of altered skeletal muscle arteriolar structure and reactivity with high salt diet and reduced renal mass hypertension.
    Frisbee JC; Lombard JH
    Microcirculation; 1999 Sep; 6(3):215-25. PubMed ID: 10501095
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sexual dimorphism in angiotensin II-induced hypertension and vascular alterations.
    Tatchum-Talom R; Eyster KM; Martin DS
    Can J Physiol Pharmacol; 2005 May; 83(5):413-22. PubMed ID: 15897923
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Dietary Fructose Increases the Sensitivity of Proximal Tubules to Angiotensin II in Rats Fed High-Salt Diets.
    Gonzalez-Vicente A; Hong NJ; Yang N; Cabral PD; Berthiaume JM; Dominici FP; Garvin JL
    Nutrients; 2018 Sep; 10(9):. PubMed ID: 30200571
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Low-dose angiotensin II infusion restores vascular function in cerebral arteries of high salt-fed rats by increasing copper/zinc superoxide dimutase expression.
    Durand MJ; Lombard JH
    Am J Hypertens; 2013 Jun; 26(6):739-47. PubMed ID: 23443725
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Renal endothelin in chronic angiotensin II hypertension.
    Sasser JM; Pollock JS; Pollock DM
    Am J Physiol Regul Integr Comp Physiol; 2002 Jul; 283(1):R243-8. PubMed ID: 12069950
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Sustained renal interstitial macrophage infiltration following chronic angiotensin II infusions.
    Ozawa Y; Kobori H; Suzaki Y; Navar LG
    Am J Physiol Renal Physiol; 2007 Jan; 292(1):F330-9. PubMed ID: 16804106
    [TBL] [Abstract][Full Text] [Related]  

  • 69. ROS during the acute phase of Ang II hypertension participates in cardiovascular MAPK activation but not vasoconstriction.
    Zhang GX; Kimura S; Nishiyama A; Shokoji T; Rahman M; Abe Y
    Hypertension; 2004 Jan; 43(1):117-24. PubMed ID: 14638624
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A novel gene (Cmya3) induced in the heart by angiotensin II-dependent but not salt-dependent hypertension in mice.
    Duka A; Schwartz F; Duka I; Johns C; Melista E; Gavras I; Gavras H
    Am J Hypertens; 2006 Mar; 19(3):275-81. PubMed ID: 16500513
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Low-dose angiotensin II enhances pressor responses without causing sustained hypertension.
    Pelaez LI; Manriquez MC; Nath KA; Romero JC; Juncos LA
    Hypertension; 2003 Oct; 42(4):798-801. PubMed ID: 12874085
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Angiotensin II utilizes Janus kinase 2 in hypertension, but not in the physiological control of blood pressure, during low-salt intake.
    Banes-Berceli AK; Al-Azawi H; Proctor D; Qu H; Femminineo D; Hill-Pyror C; Webb RC; Brands MW
    Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R1169-76. PubMed ID: 21813872
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Time-course and mechanisms of restored vascular relaxation by reduced salt intake and angiotensin II infusion in rats fed a high-salt diet.
    McEwen ST; Schmidt JR; Somberg L; Cruz Lde L; Lombard JH
    Microcirculation; 2009 Apr; 16(3):220-34. PubMed ID: 19235625
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced oxidative stress in kidneys of salt-sensitive hypertension: role of sensory nerves.
    Wang Y; Chen AF; Wang DH
    Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H3136-43. PubMed ID: 16920809
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Time-dependent changes in autonomic control of splanchnic vascular resistance and heart rate in ANG II-salt hypertension.
    Kuroki MT; Guzman PA; Fink GD; Osborn JW
    Am J Physiol Heart Circ Physiol; 2012 Feb; 302(3):H763-9. PubMed ID: 22114134
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High-salt intake enhances superoxide activity in eNOS knockout mice leading to the development of salt sensitivity.
    Kopkan L; Hess A; Husková Z; Cervenka L; Navar LG; Majid DS
    Am J Physiol Renal Physiol; 2010 Sep; 299(3):F656-63. PubMed ID: 20610532
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Endogenous hydrogen peroxide in the hypothalamic paraventricular nucleus regulates neurohormonal excitation in high salt-induced hypertension.
    Zhang M; Qin DN; Suo YP; Su Q; Li HB; Miao YW; Guo J; Feng ZP; Qi J; Gao HL; Mu JJ; Zhu GQ; Kang YM
    Toxicol Lett; 2015 Jun; 235(3):206-15. PubMed ID: 25891026
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Alkaloids of Nitraria sibirica Pall. decrease hypertension and albuminuria in angiotensin II-salt hypertension.
    Bakri M; Yi Y; Chen LD; Aisa HA; Wang MH
    Chin J Nat Med; 2014 Apr; 12(4):266-72. PubMed ID: 24863351
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Salt intake and angiotensin II alter microvessel density in the cremaster muscle of normal rats.
    Hernandez I; Cowley AW; Lombard JH; Greene AS
    Am J Physiol; 1992 Sep; 263(3 Pt 2):H664-7. PubMed ID: 1415589
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Role of ET(A) receptors in experimental ANG II-induced hypertension in rats.
    Ballew JR; Fink GD
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R150-4. PubMed ID: 11404288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.