BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1079 related articles for article (PubMed ID: 16647696)

  • 21. An evaluation of the mode of action framework for mutagenic carcinogens case study II: chromium (VI).
    McCarroll N; Keshava N; Chen J; Akerman G; Kligerman A; Rinde E
    Environ Mol Mutagen; 2010 Mar; 51(2):89-111. PubMed ID: 19708067
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Creating context for the use of DNA adduct data in cancer risk assessment: I. Data organization.
    Jarabek AM; Pottenger LH; Andrews LS; Casciano D; Embry MR; Kim JH; Preston RJ; Reddy MV; Schoeny R; Shuker D; Skare J; Swenberg J; Williams GM; Zeiger E
    Crit Rev Toxicol; 2009; 39(8):659-78. PubMed ID: 19743944
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Children as a sensitive subpopulation for the risk assessment process.
    Preston RJ
    Toxicol Appl Pharmacol; 2004 Sep; 199(2):132-41. PubMed ID: 15313585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects.
    Shipp A; Lawrence G; Gentry R; McDonald T; Bartow H; Bounds J; Macdonald N; Clewell H; Allen B; Van Landingham C
    Crit Rev Toxicol; 2006; 36(6-7):481-608. PubMed ID: 16973444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategy for genotoxicity testing: hazard identification and risk assessment in relation to in vitro testing.
    Thybaud V; Aardema M; Clements J; Dearfield K; Galloway S; Hayashi M; Jacobson-Kram D; Kirkland D; MacGregor JT; Marzin D; Ohyama W; Schuler M; Suzuki H; Zeiger E;
    Mutat Res; 2007 Feb; 627(1):41-58. PubMed ID: 17126066
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elevated somatic cell mutant frequencies and altered DNA repair responses in nonsmoking workers exposed to 1,3-butadiene.
    Legator MS; Au WW; Ammenheuser M; Ward JB
    IARC Sci Publ; 1993; (127):253-63. PubMed ID: 8070871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Data considerations for regulation of water contaminants.
    Schoeny R; Haber L; Dourson M
    Toxicology; 2006 Apr; 221(2-3):217-24. PubMed ID: 16483704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating genotoxicity data to identify a mode of action and its application in estimating cancer risk at low doses: A case study involving carbon tetrachloride.
    Eastmond DA
    Environ Mol Mutagen; 2008 Mar; 49(2):132-41. PubMed ID: 18213651
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of the dog as non-rodent test species in the safety testing schedule associated with the registration of crop and plant protection products (pesticides): present status.
    Box RJ; Spielmann H
    Arch Toxicol; 2005 Nov; 79(11):615-26. PubMed ID: 15940470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic-induced carcinogenesis--oxidative stress as a possible mode of action and future research needs for more biologically based risk assessment.
    Kitchin KT; Conolly R
    Chem Res Toxicol; 2010 Feb; 23(2):327-35. PubMed ID: 20035570
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dose responses for the formation of hemoglobin adducts and urinary metabolites in rats and mice exposed by inhalation to low concentrations of 1,3-[2,3-(14)C]-butadiene.
    Booth ED; Kilgour JD; Watson WP
    Chem Biol Interact; 2004 Mar; 147(2):213-32. PubMed ID: 15013822
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trichloroethylene and cancer: epidemiologic evidence.
    Scott CS; Cogliano VJ
    Environ Health Perspect; 2000 May; 108 Suppl 2():159-60. PubMed ID: 10807549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical evaluation of the cancer risk of dibromochloropropane (DBCP).
    Clark HA; Snedeker SM
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2005; 23(2):215-60. PubMed ID: 16291528
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a quantitative model incorporating key events in a hepatotoxic mode of action to predict tumor incidence.
    Luke NS; Sams R; DeVito MJ; Conolly RB; El-Masri HA
    Toxicol Sci; 2010 May; 115(1):253-66. PubMed ID: 20106946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rodent carcinogenicity of peroxisome proliferators and issues on human relevance.
    Lai DY
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2004 May; 22(1):37-55. PubMed ID: 15845221
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 1,3-Butadiene: III. Assessing carcinogenic modes of action.
    Kirman CR; Albertini RA; Gargas ML
    Crit Rev Toxicol; 2010 Oct; 40 Suppl 1():74-92. PubMed ID: 20868268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Current criteria to establish human carcinogens.
    Cogliano VJ
    Semin Cancer Biol; 2004 Dec; 14(6):407-12. PubMed ID: 15489133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanistic insights from biomarker studies: somatic mutations and rodent/human comparisons following exposure to a potential carcinogen.
    Albertini RJ
    IARC Sci Publ; 2004; (157):153-77. PubMed ID: 15055295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 54.