These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effect of age on the fatty acid content of Blumeria graminis conidia. Muchembled J; Sahraoui AL; Grandmougin-Ferjani A; Sancholle M Biochem Soc Trans; 2000 Dec; 28(6):875-7. PubMed ID: 11171241 [TBL] [Abstract][Full Text] [Related]
4. Iodus 40, salicylic acid, heptanoyl salicylic acid and trehalose exhibit different efficacies and defence targets during a wheat/powdery mildew interaction. Renard-Merlier D; Randoux B; Nowak E; Farcy F; Durand R; Reignault P Phytochemistry; 2007 Apr; 68(8):1156-64. PubMed ID: 17399750 [TBL] [Abstract][Full Text] [Related]
5. Changes in C12:0, C18:1, C18:2 and C20:2 fatty acid content in wheat treated with resistance inducers and infected by powdery mildew. Renard-Merlier D; Laruelle F; Nowak E; Durand R; Reignault P Plant Biol (Stuttg); 2009 Jan; 11(1):75-82. PubMed ID: 19121116 [TBL] [Abstract][Full Text] [Related]
6. Lipid metabolism is differentially modulated by salicylic acid and heptanoyl salicylic acid during the induction of resistance in wheat against powdery mildew. Tayeh C; Randoux B; Bourdon N; Reignault P J Plant Physiol; 2013 Dec; 170(18):1620-9. PubMed ID: 23880093 [TBL] [Abstract][Full Text] [Related]
7. Identification of physiological races of Blumeria graminis f. sp. tritici and evaluation of powdery mildew resistance in wheat cultivars in Sistan province, Iran. Salari M; Okhovat SM; Sharifi-Tehrani A; Hedjaroude GA; Zad SJ; Mohammadi M Commun Agric Appl Biol Sci; 2003; 68(4 Pt B):549-53. PubMed ID: 15151289 [TBL] [Abstract][Full Text] [Related]
8. Local and systemic effects of oxylipins on powdery mildew infection in barley. Cowley T; Walters D Pest Manag Sci; 2005 Jun; 61(6):572-6. PubMed ID: 15668923 [TBL] [Abstract][Full Text] [Related]
9. Suppression of wheat TaCDK8/TaWIN1 interaction negatively affects germination of Blumeria graminis f.sp. tritici by interfering with very-long-chain aldehyde biosynthesis. Kong L; Chang C Plant Mol Biol; 2018 Jan; 96(1-2):165-178. PubMed ID: 29197938 [TBL] [Abstract][Full Text] [Related]
10. Baseline sensitivity to proquinazid in Blumeria graminis f. sp. tritici and Erysiphe necator and cross-resistance with other fungicides. Genet JL; Jaworska G Pest Manag Sci; 2009 Aug; 65(8):878-84. PubMed ID: 19418441 [TBL] [Abstract][Full Text] [Related]
11. An important role for secreted esterase in disease establishment of the wheat powdery mildew fungus Blumeria graminis f. sp. tritici. Feng J; Wang F; Hughes GR; Kaminskyj S; Wei Y Can J Microbiol; 2011 Mar; 57(3):211-6. PubMed ID: 21358762 [TBL] [Abstract][Full Text] [Related]
12. Effect of the Penicillium chrysogenum antifungal protein (PAF) on barley powdery mildew and wheat leaf rust pathogens. Barna B; Leiter E; Hegedus N; Bíró T; Pócsi I J Basic Microbiol; 2008 Dec; 48(6):516-20. PubMed ID: 18798177 [TBL] [Abstract][Full Text] [Related]
13. Induction of resistance in wheat by bacterial cyclic lipopeptides. Khong NG; Randoux B; Deravel J; Tisserant B; Tayeh Ch; Coutte F; Bourdon N; Jacques P; Reignault P Commun Agric Appl Biol Sci; 2013; 78(3):479-87. PubMed ID: 25151823 [TBL] [Abstract][Full Text] [Related]
14. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew. Mustafa G; Randoux B; Tisserant B; Fontaine J; Magnin-Robert M; Lounès-Hadj Sahraoui A; Reignault P Mycorrhiza; 2016 Oct; 26(7):685-97. PubMed ID: 27130314 [TBL] [Abstract][Full Text] [Related]
15. Consecutive monitoring of lifelong production of conidia by individual conidiophores of Blumeria graminis f. sp. hordei on barley leaves by digital microscopic techniques with electrostatic micromanipulation. Moriura N; Matsuda Y; Oichi W; Nakashima S; Hirai T; Sameshima T; Nonomura T; Kakutani K; Kusakari S; Higashi K; Toyoda H Mycol Res; 2006 Jan; 110(Pt 1):18-27. PubMed ID: 16378716 [TBL] [Abstract][Full Text] [Related]
16. Metrafenone: studies on the mode of action of a novel cereal powdery mildew fungicide. Opalski KS; Tresch S; Kogel KH; Grossmann K; Köhle H; Hückelhoven R Pest Manag Sci; 2006 May; 62(5):393-401. PubMed ID: 16602071 [TBL] [Abstract][Full Text] [Related]
17. Effects of biosurfactants, mannosylerythritol lipids, on the hydrophobicity of solid surfaces and infection behaviours of plant pathogenic fungi. Yoshida S; Koitabashi M; Nakamura J; Fukuoka T; Sakai H; Abe M; Kitamoto D; Kitamoto H J Appl Microbiol; 2015 Jul; 119(1):215-24. PubMed ID: 25898775 [TBL] [Abstract][Full Text] [Related]
18. Quantitative proteomics reveals the central changes of wheat in response to powdery mildew. Fu Y; Zhang H; Mandal SN; Wang C; Chen C; Ji W J Proteomics; 2016 Jan; 130():108-19. PubMed ID: 26381202 [TBL] [Abstract][Full Text] [Related]
19. Sequence variation in the CYP51 gene of Blumeria graminis associated with resistance to sterol demethylase inhibiting fungicides. Wyand RA; Brown JK Fungal Genet Biol; 2005 Aug; 42(8):726-35. PubMed ID: 15916909 [TBL] [Abstract][Full Text] [Related]
20. MECHANISMS INVOLVED IN MYCORRHIZAL WHEAT PROTECTION AGAINST POWDERY MILDEW. Mustafa G; Tisserant B; Randoux B; Fontaine J; Sahraoui AL; Reignault P Commun Agric Appl Biol Sci; 2014; 79(3):403-10. PubMed ID: 26080475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]