These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 16649079)
1. Carbon requirements of some nematophagous, entomopathogenic and mycoparasitic hyphomycetes as fungal biocontrol agents. Sun M; Liu X Mycopathologia; 2006 May; 161(5):295-305. PubMed ID: 16649079 [TBL] [Abstract][Full Text] [Related]
2. Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Gao L; Sun MH; Liu XZ; Che YS Mycol Res; 2007 Jan; 111(Pt 1):87-92. PubMed ID: 17158041 [TBL] [Abstract][Full Text] [Related]
3. Development of a population-based threshold model of conidial germination for analysing the effects of physiological manipulation on the stress tolerance and infectivity of insect pathogenic fungi. Andersen M; Magan N; Mead A; Chandler D Environ Microbiol; 2006 Sep; 8(9):1625-34. PubMed ID: 16913922 [TBL] [Abstract][Full Text] [Related]
4. A novel two-stage cultivation method to optimize carbon concentration and carbon-to-nitrogen ratio for sporulation of biocontrol fungi. Gao L; Liu XZ Folia Microbiol (Praha); 2009; 54(2):142-6. PubMed ID: 19418252 [TBL] [Abstract][Full Text] [Related]
5. Sporulation of Metarhizium anisopliae and Beauveria bassiana on Coptotermes formosanus and in vitro. Sun J; Fuxa JR; Henderson G J Invertebr Pathol; 2002 Oct; 81(2):78-85. PubMed ID: 12445791 [TBL] [Abstract][Full Text] [Related]
6. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Palma-Guerrero J; Jansson HB; Salinas J; Lopez-Llorca LV J Appl Microbiol; 2008 Feb; 104(2):541-53. PubMed ID: 17927761 [TBL] [Abstract][Full Text] [Related]
7. Ethanol production from chitosan by the nematophagous fungus Pochonia chlamydosporia and the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Aranda-Martinez A; Naranjo Ortiz MÁ; Abihssira García IS; Zavala-Gonzalez EA; Lopez-Llorca LV Microbiol Res; 2017 Nov; 204():30-39. PubMed ID: 28870289 [TBL] [Abstract][Full Text] [Related]
8. Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Yeo H; Pell JK; Alderson PG; Clark SJ; Pye BJ Pest Manag Sci; 2003 Feb; 59(2):156-65. PubMed ID: 12587869 [TBL] [Abstract][Full Text] [Related]
9. Phylogeny of certain biocontrol agents with special reference to nematophagous fungi based on RAPd. Jarullah BM; Subramanian RB; Jummanah MS Commun Agric Appl Biol Sci; 2005; 70(4):897-903. PubMed ID: 16628936 [TBL] [Abstract][Full Text] [Related]
10. Utilization of various carbon sources for the growth of waterborne conidial fungi. Sati SC; Bisht S Mycologia; 2006; 98(5):678-81. PubMed ID: 17256571 [TBL] [Abstract][Full Text] [Related]
11. Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system. Gao L; Liu X J Microbiol; 2010 Dec; 48(6):767-70. PubMed ID: 21221932 [TBL] [Abstract][Full Text] [Related]
12. Effects of carbon concentrations and carbon to nitrogen ratios on sporulation of two biological control fungi as determined by different culture methods. Gao L; Liu X Mycopathologia; 2010 Jun; 169(6):475-81. PubMed ID: 20155445 [TBL] [Abstract][Full Text] [Related]
13. Whey for mass production of Beauveria bassiana and Metarhizium anisopliae. Kassa A; Brownbridge M; Parker BL; Skinner M; Gouli V; Gouli S; Guo M; Lee F; Hata T Mycol Res; 2008 May; 112(Pt 5):583-91. PubMed ID: 18396025 [TBL] [Abstract][Full Text] [Related]
14. Biological control of Rhipicephalus (Boophilus) annulatus by different strains of Metarhizium anisopliae, Beauveria bassiana and Lecanicillium psalliotae fungi. Pirali-Kheirabadi K; Haddadzadeh H; Razzaghi-Abyaneh M; Bokaie S; Zare R; Ghazavi M; Shams-Ghahfarokhi M Parasitol Res; 2007 May; 100(6):1297-302. PubMed ID: 17186273 [TBL] [Abstract][Full Text] [Related]
15. Glossina morsitans morsitans: mortalities caused in adults by experimental infection with entomopathogenic fungi. Kaaya GP Acta Trop; 1989 Mar; 46(2):107-14. PubMed ID: 2565071 [TBL] [Abstract][Full Text] [Related]
16. Selection of a fungal isolate for the control of the pink hibiscus mealybug Maconellicoccus hirsutus. Ibarra-Cortés KH; Guzmán-Franco AW; González-Hernández H; Suarez-Espinosa J; Baverstock J Pest Manag Sci; 2013 Jul; 69(7):874-82. PubMed ID: 23255508 [TBL] [Abstract][Full Text] [Related]
17. Responsiveness of entomopathogenic fungi to menadione-induced oxidative stress. Azevedo RF; Souza RK; Braga GU; Rangel DE Fungal Biol; 2014 Dec; 118(12):990-5. PubMed ID: 25457946 [TBL] [Abstract][Full Text] [Related]
18. Comparison of non-linear temperature-dependent development rate models applied to in vitro growth of entomopathogenic fungi. Smits N; Brière JF; Fargues J Mycol Res; 2003 Dec; 107(Pt 12):1476-84. PubMed ID: 15000248 [TBL] [Abstract][Full Text] [Related]
19. Pathogenicity of Beauveria bassiana, Metarhizium anisopliae (Deuteromycotina: Hyphomycetes), and other entomopathogenic fungi against Lygus lineolaris (Hemiptera: Miridae). Liu H; Skinner M; Parker BL; Brownbridge M J Econ Entomol; 2002 Aug; 95(4):675-81. PubMed ID: 12216806 [TBL] [Abstract][Full Text] [Related]
20. Selection of entomopathogenic fungi for aphid control. Vu VH; Hong SI; Kim K J Biosci Bioeng; 2007 Dec; 104(6):498-505. PubMed ID: 18215637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]