BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 16649177)

  • 1. Correlation of swelling pressure and intrafibrillar water in young and aged human intervertebral discs.
    Sivan S; Merkher Y; Wachtel E; Ehrlich S; Maroudas A
    J Orthop Res; 2006 Jun; 24(6):1292-8. PubMed ID: 16649177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of osmotic and mechanical pressures on water partitioning in articular cartilage.
    Maroudas A; Wachtel E; Grushko G; Katz EP; Weinberg P
    Biochim Biophys Acta; 1991 Mar; 1073(2):285-94. PubMed ID: 2009281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are disc pressure, stress, and osmolarity affected by intra- and extrafibrillar fluid exchange?
    Schroeder Y; Sivan S; Wilson W; Merkher Y; Huyghe JM; Maroudas A; Baaijens FP
    J Orthop Res; 2007 Oct; 25(10):1317-24. PubMed ID: 17557324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An ionised/non-ionised dual porosity model of intervertebral disc tissue.
    Huyghe JM; Houben GB; Drost MR; van Donkelaar CC
    Biomech Model Mechanobiol; 2003 Aug; 2(1):3-19. PubMed ID: 14586814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration.
    Urban JP; McMullin JF
    Spine (Phila Pa 1976); 1988 Feb; 13(2):179-87. PubMed ID: 3406838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extrafibrillar proteoglycans osmotically regulate the molecular packing of collagen in cartilage.
    Katz EP; Wachtel EJ; Maroudas A
    Biochim Biophys Acta; 1986 Jun; 882(1):136-9. PubMed ID: 3707995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swelling pressure of the inervertebral disc: influence of proteoglycan and collagen contents.
    Urban JP; McMullin JF
    Biorheology; 1985; 22(2):145-57. PubMed ID: 3986322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of pH and ionic strength on intrafibrillar hydration in articular cartilage.
    Wachtel E; Maroudas A
    Biochim Biophys Acta; 1998 Jun; 1381(1):37-48. PubMed ID: 9659370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water and electrolyte content of human intervertebral discs under variable load.
    Kraemer J; Kolditz D; Gowin R
    Spine (Phila Pa 1976); 1985; 10(1):69-71. PubMed ID: 3983704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique.
    Basser PJ; Schneiderman R; Bank RA; Wachtel E; Maroudas A
    Arch Biochem Biophys; 1998 Mar; 351(2):207-19. PubMed ID: 9515057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age-related changes in collagen packing of human articular cartilage.
    Wachtel E; Maroudas A; Schneiderman R
    Biochim Biophys Acta; 1995 Feb; 1243(2):239-43. PubMed ID: 7873568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Secret Life of Collagen: Temporal Changes in Nanoscale Fibrillar Pre-Strain and Molecular Organization during Physiological Loading of Cartilage.
    Inamdar SR; Knight DP; Terrill NJ; Karunaratne A; Cacho-Nerin F; Knight MM; Gupta HS
    ACS Nano; 2017 Oct; 11(10):9728-9737. PubMed ID: 28800220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison between mechano-electrochemical and biphasic swelling theories for soft hydrated tissues.
    Wilson W; van Donkelaar CC; Huyghe JM
    J Biomech Eng; 2005 Feb; 127(1):158-65. PubMed ID: 15868798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of rabbit intervertebral disc physiology based on water metabolism. I. Factors influencing metabolism of the normal intervertebral discs.
    Hirano N; Tsuji H; Ohshima H; Kitano S; Sano A
    Spine (Phila Pa 1976); 1988 Nov; 13(11):1291-6. PubMed ID: 3206289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of exogenous crosslinking on hydration and fluid flow in the intervertebral disc subjected to compressive creep loading and unloading.
    Chuang SY; Popovich JM; Lin LC; Hedman TP
    Spine (Phila Pa 1976); 2010 Nov; 35(24):E1362-6. PubMed ID: 21030899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable hydrogels with high fixed charge density and swelling pressure for nucleus pulposus repair: biomimetic glycosaminoglycan analogues.
    Sivan SS; Roberts S; Urban JP; Menage J; Bramhill J; Campbell D; Franklin VJ; Lydon F; Merkher Y; Maroudas A; Tighe BJ
    Acta Biomater; 2014 Mar; 10(3):1124-33. PubMed ID: 24270091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water diffusion pathway, swelling pressure, and biomechanical properties of the intervertebral disc during compression load.
    Ohshima H; Tsuji H; Hirano N; Ishihara H; Katoh Y; Yamada H
    Spine (Phila Pa 1976); 1989 Nov; 14(11):1234-44. PubMed ID: 2603057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Water and electrolyte content of human intervertebral disks under varying load].
    Kolditz D; Krämer J; Gowin R
    Z Orthop Ihre Grenzgeb; 1985; 123(2):235-8. PubMed ID: 4013484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality.
    Niu LN; Jee SE; Jiao K; Tonggu L; Li M; Wang L; Yang YD; Bian JH; Breschi L; Jang SS; Chen JH; Pashley DH; Tay FR
    Nat Mater; 2017 Mar; 16(3):370-378. PubMed ID: 27820813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.